
Business Value of

Agile Methods
Using Return on Investment

Dr. David F. Rico, PMP, CSM



2

Agenda
Introduction
Sources of Business Value
Planning for Business Value
Surveys of Business Value
Measures of Business Value
Models of Business Value
Estimation of Business Value
Comparison of Business Value
Summary of Business Value



3

Author
DoD contractor with 25+ years of IT experience
B.S. Comp. Sci., M.S. Soft. Eng., D.M. Info. Tech.
Large NASA & DoD programs (U.S., Japan, Europe)

* Published five textbooks and over 15 articles on various topics in return on investment, information technology, agile methods, etc.



4

Purpose
Provide an overview of the business value of 
Agile Methods using return on investment:

Business value is an approach for estimating the 
tangible and intangible worth of organizational assets
Business value is an appraisal of intellectual 
assets such as knowledge, experience, and skills
Business value is a technique for determining the 
complete worth of an investment to an enterprise
Business value is a method of determining the 
health and well-being of a firm in the long-run
Business value includes employee, customer, 
supplier, alliance, management, and societal value



5

What is Agility?
A-gil-i-ty (ə-'ji-lə-tē) Quickness, lightness, 
and ease of movement; nimbleness

Agility is the ability to create and respond to change
in order to profit in a turbulent business environment
Agility is reprioritizing for maneuverability because 
of shifting requirements, technology, and knowledge
Agility is a very fast response to changes in customer 
requirements through intensive customer interaction
Agility is the use of adaptability and evolutionary 
delivery to promote rapid customer responsiveness
Agility is a better way of developing products using 
collaboration, teamwork, iterations, and flexibility



6

What are Agile Methods?
‘Adaptable’ software development methodologies
‘Human-centric’ method for creating business value
‘Alternative’ to large document-based methodologies

Agile Manifesto. (2001). Manifesto for agile software development. Retrieved September 3, 2008, from http://www.agilemanifesto.org



7

Essence of Agile Methods
High degree of customer & developer interaction
Highly-skilled teams producing frequent iterations
Right-sized, just-enough, and just-in-time process

Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.



8

Why use Agile Methods?
Adaptability to changing market/customer needs
Better cost efficiencies and fastest time-to-market
Improved quality, satisfaction, and project success

Agile Manifesto. (2001). Manifesto for agile software development. Retrieved September 3, 2008, from http://www.agilemanifesto.org



9

Antecedents of Agile Methods
Rooted in management evolution from early 1900s
Evolved from software methods from 1950s/1960s
Spinoffs of NPD/RAD approaches from the 1980s

Rico, D. F., Sayani, H. H., & Field, R. F. (2008). History of computers, electronic commerce, and agile methods. In M. V. Zelkowitz (Ed.), Advances in 
computers: Emerging technologies, Vol. 73. San Diego, CA: Elsevier.



10

Agenda
Introduction

Sources of Business Value
Planning for Business Value
Surveys of Business Value
Measures of Business Value
Models of Business Value
Estimation of Business Value
Comparison of Business Value
Summary of Business Value



11

Types of Agile Methods
Crystal Methods and Scrum 1st Agile Methods
Extreme Programming swept the globe by 2002
Scrum/Extreme Programming hybrids are popular

Highsmith, J. A. (2002). Agile software development ecosystems. Boston, MA: Addison-Wesley.

Feature Lists (Customer Needs), Domain Model 
(Object Orientation), Inspection (Peer Review)

Use Cases, Domain Models, Frequent Delivery, 
Reflection Workshops, Risk Management

DSDM

Easel

IBM

Beck

De Luca

Millington

Sutherland

Cockburn

Author

Release Planning, Onsite Customers, Iterations,
Pair Programming, Test-Driven Development

User Involvement, Time Boxes and Prototypes 
(Iterations), Testing and Quality Assurance

Backlogs (Feature Lists), Daily Scrums, Sprints 
(Iterations), Retrospectives (Post Mortems)

Major Features

Chrysler

Nebulon

Firm

1998

1997

1993

1993

1991

Year

Feature-Driven 
Development

Crystal
Methods

Extreme 
Programming

Dynamic 
Systems

Development

Scrum

Method



12

Crystal Methods
Created by Alistair Cockburn in 1991
Has 14 practices, 10 roles, and 25 products
Scalable family of techniques for critical systems

Cockburn, A. (2002). Agile software development. Boston, MA: Addison-Wesley.



13

Scrum
Created by Jeff Sutherland at Easel in 1993
Has 5 practices, 3 roles, 5 products, rules, etc.
Uses EVM to burn down backlog in 30-day iterations

Schwaber, K., & Beedle, M. (2001). Agile software development with scrum. Upper Saddle River, NJ: Prentice-Hall.



14

Dynamic Systems Develop.
Created by group of British firms in 1993
15 practices, 12 roles, and 23 work products
Non-proprietary RAD approach from early 1990s

Stapleton, J. (1997). DSDM: A framework for business centered development. Harlow, England: Addison-Wesley.



15

Feature Driven Development
Created by Jeff De Luca at Nebulon in 1997
Has 8 practices, 14 roles, and 16 work products
Uses object-oriented design and code inspections

Palmer, S. R., & Felsing, J. M. (2002). A practical guide to feature driven development. Upper Saddle River, NJ: Prentice-Hall.



16

Extreme Programming
Created by Kent Beck at Chrysler in 1998
Has 28 practices, 7 roles, and 7 work products
Popularized pair programming and test-driven dev.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-Wesley.



17

Extreme Programming (cont’d)
RELEASE PLANNING — Best Practice

Created by Kent Beck at Chrysler in 1998
Lightweight project management framework
Used for managing both XP and Scrum projects

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.



18

PAIR PROGRAMMING — Best Practice
Term coined by Jim Coplien in 1995
Consists of two side-by-side programmers
Highly-effective group problem-solving technique

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Boston, MA: Pearson Education.

Extreme Programming (cont’d)



19

REFACTORING — Best Practice
Term coined by William Opdyke in 1990
Process of frequently rewriting source code
Improves readability, maintainability, and quality

Extreme Programming (cont’d)

Fowler, M. (1999). Refactoring: Improving the design of existing code. Boston, MA. Addison-Wesley.



20

TEST-DRIVEN DEV. — Best Practice
Term coined by Kent Beck in 2003
Consists of writing all tests before coding
Ensures all source code is verified and validated

Beck, K. (2003). Test-driven development: By example. Boston, MA: Addison-Wesley.

Extreme Programming (cont’d)



21

Extreme Programming (cont’d)
CONT. INTEGRATION — Best Practice

Term coined by Martin Fowler in 1998
Process of automated build/regression testing
Evaluates impact of all changes against entire system

Duvall, P., Matyas, S., & Glover, A. (2006). Continuous integration: Improving software quality and reducing risk. Boston, MA: Addison-Wesley

Build
Integration

Server

Version
Control
Server

Build
Scripts

UsesWatches

Build
Status

ProvidesDeveloper A

Developer B

Developer C

Commits
Changes

Commits
Changes

Commits
Changes

Compile Source 
Code

Run Unit Tests

Run Coverage 
Tests
Static Code 
Analysis

Build Database

Generate Help 
Files
Archive and 
Deploy



22

Agenda
Introduction
Sources of Business Value

Planning for Business Value
Surveys of Business Value
Measures of Business Value
Models of Business Value
Estimation of Business Value
Comparison of Business Value
Summary of Business Value



23

Release Planning Deliverables
Used in both Extreme Programming and Scrum
Lightweight framework of Agile planning products
Ranges from release plans down through unit tests

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

No. Deliverable Description 

1. Release Plan Fluid informal roadmap (or program plan) for planning 
software releases (usually containing one or more iterations). 

2. Iteration Plan Informal project plan that divides an iteration into user stories 
and development tasks (usually spanning two to three weeks) 

3. User Story A software requirement that has value to end-users or 
customers (usually a simple sentence written on an index card) 

4. Metaphor A simple narrative about how the whole system works (usually 
written as a sentence or paragraph with major objects) 

5. Development Task A development activity necessary to satisfy a user story 
(usually a numbered list of software development activities) 

6. Acceptance Test An end-user test to determine if an iteration satisfies its 
acceptance criteria (usually written and executed by customers) 

7. Unit Test A development test to determine if software components are 
working properly (usually written and executed by developers) 



24

Release Plan
Fluid, informal roadmap for planning releases
Includes dates for releases, iterations, and stories
Must prioritize, split, estimate, and order user stories

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

Release Plan

Release Plan
Release
Iteration

Release Plan
Release Iteration

1
2
3
4
n

1
1
2
2
n

Story
01 thru 06
07 thru 12
13 thru 18
19 thru 24
25 thru nn



25

Iteration Plan
Plan that divides iterations into development tasks
Each iteration is one to three weeks in duration
Iteration plans updated using daily standups

Iteration Plan

Iteration Plan
Story
Task
Status

Iteration Plan
Story

1
1
2
2
n

Task
1
2
3
4
n

Developer
Bob
Sue
Mary
John

n

Status
1/3
2/3
3/3
3/3
n/n

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.



26

User Story
A function or feature of value to a customer
An estimable and testable software requirement
Six user stories should be implemented per iteration

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.

<Title of User Story>

Type of User
Goal of User
Objective of User

Make a Reservation



27

System Metaphor
Simple story about how the whole system works
Overarching 10,000 foot view of system architecture
Pushes the system into a sense of coherent cohesion

System Metaphor

Metaphor

System Metaphor

Shopping Cart

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.



28

Development Tasks
Detailed steps for implementing user stories
User stories are decomposed into technical tasks
Brainstormed by developers to last two to three days

<Title of Development Task>

Action of Developer
Software Unit

Technology

Splash Screen

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.



29

Acceptance Tests
Black-box, functional tests to be performed
Specified by customers during iteration planning
Run when user stories and unit tests are completed

<Title of User Story>

Type of User
Satisfy their Goals and 

Objectives

Make a Reservation
Verify customers can establish a 
reservation
Verify customers can change a 
reservation
Verify customers can cancel a 
reservation

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.



30

Unit Tests
A test written from the developer’s perspective
Each task is implemented by two programmers
Unit tests are developed prior to implementation

<Title of Development Task>

Type of User
Satisfy Task
Condition Occurs

Make a Splash Screen
Verify customers can see splash 
screen when they visit website
Verify customers can see company 
logo when splash screen executes
Verify customers can skip splash 
screen when they want to enter site

Beck, K., & Fowler, M. (2004). Planning extreme programming. Upper Saddle River, NJ: Addison-Wesley.



31

Agenda
Introduction
Sources of Business Value
Planning for Business Value

Surveys of Business Value
Measures of Business Value
Models of Business Value
Estimation of Business Value
Comparison of Business Value
Summary of Business Value



32

Surveys of Agile Methods
Numerous surveys of Agile Methods since 2003
AmbySoft and Version One collect annual data
Generally include both hard and soft benefits

Rico, D. F. (2008). What is the return-on-investment of agile methods? Retrieved February 3, 2009, from http://davidfrico.com/rico08a.pdf



33

Shine Technologies
Survey of 131 international respondents
Extreme Programming (58%) and Scrum (8%)
85% of respondents were experts in Agile Methods

Johnson, M. (2003). Agile methodologies: Survey results. Victoria, Australia: Shine Technologies.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Productivity

Quality

Satisfaction

Cost

Improvement



34

Agile Journal
Survey of 400 international respondents
Extreme programming (28%) and Scrum (20%)
80% using Agile Methods to deliver maximum value

Barnett, L. (2006). And the agile survey says. Agile Journal, 1(1).

0% 10% 20% 30% 40% 50%

Time to Market

Quality

Alignment

Cost

Improvement



35

Microsoft
Survey of 492 Microsoft respondents
Scrum (65%) and Extreme Programming (5%)
65% using Agile Methods in virtual distributed teams

Begel, A., & Nagappan, N. (2007). Usage and perceptions of agile software development in an industrial context: An exploratory study. 
Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 255-264.

0% 10% 20% 30% 40% 50% 60% 70%

Communication

Time to Market

Flexibility

Quality

Satisfaction

Productivity

Improvement



36

UMUC
Survey of 250 international respondents
70% of respondents using Agile Methods
83% of were from small-to-medium sized firms

Rico, D. F., Sayani, H. H., Stewart, J. J., & Field, R. F. (2007). A model for measuring agile methods and website quality. TickIT International, 9(3), 3-15.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Satisfaction

Productivity

Cycle Time

Quality

Cost

Improvement



37

AmbySoft
Survey of 642 international respondents
69% of firms had adopted an Agile Method
62% were from firms with less than 1,000 people

Ambler, S. W. (2008). Agile adoption survey. Retrieved October 17, 2008, from http://www.ambysoft.com/downloads/surveys/AgileAdoption2008.ppt

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Productivity

Satisfaction

Project Success

Quality

Cost

Virtual Success

Improvement



38

IT Agile
Survey of 207 respondents in Germany
Scrum (21%) and Extreme Programming (14%)
97% of respondents are satisfied with Agile Methods

Wolf, H., & Roock, A. (2008). Agile becomes mainstream: Results of an Online Survey. Object Spektrum, 15(3), 10-13.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Flexibility

Job Satisfaction

Learning on the Job

Productivity

Project Status

Quality

Improvement




