
1/99

Principles of Computer Science
An Invigorating, Hands-On Approach

Joshua Crotts

September 29, 2023

2/99

A Logic Primer

September 29, 2023

3/99

What is logic?

Logic is the use of deductive reasoning to analyze an argument.

Arguments are comprised of premises and conclusions.

Premises describe the reasoning of an argument.

A conclusion is what follows from the premises.

September 29, 2023

4/99

Truth values and connectives

Propositions are statements that are either true or false.

E.g., “The sky is blue”, “2 + 2 = 5”

We assign truth values, i.e., “true” or “false”, to a proposition.

Connectives allow us to modify the truth value of propositions and
conjoin propositions.

Five connectives in zeroth-order logic: ¬,∧,∨,→,↔

September 29, 2023

5/99

Logical negation

In most instances, for any proposition ‘p’, it is safe to use the phrase,
“It is not the case that ‘p’ is true”, to represent the logical negation
of ‘p’.

Problem: sentences do not have a straightforward binary conversion
between non-negation and negation.

Truth table:
p ¬p
⊤ ⊥
⊥ ⊤

September 29, 2023

6/99

Logical conjunction

Represents the connection of propositions with non-symbolic words
such as “and” and “but”.

Both operands of a schema must be true for the logical conjunction
to be true.

Truth table:
p q p ∧ q

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊥

September 29, 2023

7/99

Logical disjunction

Represents the truth of at least one of two schema using phrases like
“or”.

Logical disjunction is inclusive-or.

Truth table:
p q p ∨ q

⊤ ⊤ ⊤
⊤ ⊥ ⊤
⊥ ⊤ ⊤
⊥ ⊥ ⊥

September 29, 2023

8/99

Logical conditional

Determines the truth conditions for a relationship between schema.

When the antecedent is true and the consequent is false, the
conditional is false.

“Implication is the validity of the conditional”.

Truth table:
p q p → q

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

September 29, 2023

9/99

Logical biconditional

True if both operands of the biconditional are the same.

“Equivalence” is the validity of the biconditional”.

Truth table:
p q p ↔ q

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊤

September 29, 2023

10/99

Quantifiers

In first-order logic we use quantifiers for one reason: as their name
suggests, they quantify, or provide numeric amounts to, some entity.

Universal quantifier:

To say that “All math majors are smart”, we use predicates and
variables: ‘∀x(M(x) → S(x))’
We say S(x) means x is smart, and M(x) represents x is a math major.

Existential quantifier:

To say that “Some math majors are computer science majors”, we use
‘∃x(M(x) ∧ C (x))’.
We say C (x) means x is a computer science major.

September 29, 2023

11/99

Identity

Identity allows us to denote reference a particular entity.

E.g., “Anyone who is the best computer science is Katherine
Johnson”:

‘∀x(C (x) → ∀y((C (y) ∧ B(x , y)) → x = k))’
We say B(x , y) means x is better than y .

Identity is a predicate; returns true or false if the identity relationship
holds.

September 29, 2023

12/99

Set theory

A set S is an unordered non-duplicate collection of values.

An element x is in S means x ∈ S .

The number of elements in a set S is denoted as |S | also called the
cardinality.

A subset of S , namely S ′, is denoted as S ′ ⊆ S if all elements of S ′

are elements of S .

Two sets are equivalent if they are subsets of each other.

September 29, 2023

13/99

More about set theory

The union of two sets S and T , i.e., S ∪ T , is defined as the set of
elements that are in either S or T or both.

The intersection of two sets S and T , i.e., S ∩T , is defined as the set
of elements that are in both S and T .

The difference of two sets S and T , i.e., S − T , is defined as the set
of elements that are in S but not in T .

Some common mathematical sets: natural numbers N, the integers Z,
the rationals Q, the reals R, and the complex numbers C.

September 29, 2023

14/99

Functions

Functions are maps between sets called the domain and the range.

E.g., f (x) = x + 5 maps any number x to the set of x plus five. For
instance, f (5) = 10.

Substitute the function parameters, i.e., x , for the arguments, i.e., 5.

We can write functions of multiple arguments:

g(x , y , z) = 3x2 + 4y + z

g(10, 2, 3) = 3(10)2 + 4(2) + 3

= 311

September 29, 2023

15/99

Recursive functions

A recursive function is a function that calls itself.

Think of addition: if we add two values n and m, we know that
n + 0 = n. To solve n +m, we should solve n + (m − 1). Then, we
can propagate the result back up. Assume we know how to add and
subtract one.

E.g.,

add(3, 4) = 3 + 4

= 1 + (3 + 3)

= 1 + (1 + (3 + 2))

= 1 + (1 + (1 + (3 + 1)))

= 1 + (1 + (1 + (1 + (3 + 0))))

= 1 + 1 + 1 + 1 + 3

September 29, 2023

16/99

Data Structures

September 29, 2023

17/99

What are data structures?

Data structures store data!

Different ways of storing data for performance, space optimization,
and so forth.

Many are simple, some are wildly complex.

September 29, 2023

18/99

Arrays

Arrays are contiguous blocks of storage where each block contains
space for n elements of a given type.

An advantage to using arrays are their quick access times.

A disadvantage of arrays is that they are not resizable, their size must
be known before creation.

Arrays cannot store differing types; i.e., we can’t store a string and an
integer in the same array.

September 29, 2023

19/99

Array Lists

Like arrays, array lists store elements of a type. Unlike arrays, they
are resizable!

Advantages:

Most implementations are quick to set up and understand, which leads
to their widespread usage compared to other data structures.
As we said, they are resizable.
Insertion of new elements is easy.

Disadvantages:

Easy to use, but not performant. Insertion and removal of elements is
slow.

September 29, 2023

20/99

Linked Lists

Linked lists are a series of nodes, or elements, linked together in a
chain of sorts.

Advantages:

Insertion, addition, and removal is quick! No need to resize/shift
values.

Disadvantages:

Element/index retrieval is slow; we no longer have contiguous elements
in memory.

September 29, 2023

21/99

Stacks

The stack data structure is a collection of elements that operate on
the principle of last-in-first-out, or LIFO.

The last thing that we enter is the first thing removed.

Advantages:

Fast insertion and removal operations via push and pop.

Disadvantages:

Not as flexible as arrays or lists; cannot access arbitrary elements.

September 29, 2023

22/99

Queue

The queue data structure is a collection of elements that operate on
the principle of first-in-first-out, or FIFO.

The first thing that we enter is the first thing removed.

Advantages:

Fast insertion and removal operations via enqueue and dequeue.

Disadvantages:

Not as flexible as arrays or lists; cannot access arbitrary elements.

September 29, 2023

23/99

Sets

Sets are similar to their mathematical counterpart; collection of
unordered and non-duplicate elements.

Advantages:

Easy to add and remove elements; we can also query the set for item
presence.

Disadvantages:

No ordering to values; no “indices” to elements of a set.

September 29, 2023

24/99

Maps

Maps are association pairs/relationships. These pairs have a key and
a corresponding value.

Advantages:

Easy to determine whether a key exists in the map.
Trivial to setup a relationship between two values.

Disadvantages:

No ordering to key/value pairs.

September 29, 2023

25/99

Trees

Trees are like linked lists, but there are potentially multiple links to a
node.

Trees are recursive data structures because the elements of a tree are
trees themselves.

E.g., binary trees are nodes with at most two children.

Advantages:

Easy to describe relationships with real-world systems, e.g.,
mathematical structures, and even file systems.

Disadvantages:

Hard to design, can become “left” or “right” leaning, decreasing
performance.

September 29, 2023

26/99

Graphs

A graph is a tuple ⟨V ,E ⟩, where V is the set of vertices, or nodes,
and E is the set of edges.

Edges are tuples, which serve as links between vertices.

Edges can have a direction or be bidirectional.

Edges in a graph may also be either weighted or unweighted ,
denoting a “cost”.

Advantages:

Applicable to lots of real-world concepts.

Disadvantages:

Hard to write algorithms for, and can be costly in terms of performance
and space.

September 29, 2023

27/99

Formal Languages

September 29, 2023

28/99

What are languages?

To talk about languages, we first need to define an alphabet.

Alphabets are sets, Σ, where each element is a distinct symbol or a
grouping of symbols.

A language L over an alphabet Σ is a subset of Σ where each element
is an arrangement, or a permutation, of the alphabet.

September 29, 2023

29/99

Grammars

Grammars describe the syntax of a language.

We define a grammar G as a set of terminals T , a set of
non-terminals T ′, and a set of production rules R.

A terminal is an atomic literal result of a production rule.
A non-terminal is a set of possible paths that a string can take in a
production rule.
Production rules combine and define the relationship between terminals
and non-terminals.

September 29, 2023

30/99

Backus-Naur Form grammars

(Extended) Backus-Naur Form grammars are a formalism to
grammatical language constructions.

Example of an BNF grammar for a prefix notation arithmetic
expression language:

T ::= "0" | "1" | ... | "9" | "+" | "-" | "*" | "/"

T’ ::= R* WS NUM OP EXPR

WS ::= " "

NUM ::= ("0" | "1" | ... | "9")+

OP ::= "+" | "-" | "*" | "/"

EXPR ::= "(" OP WS EXPR WS EXPR ")"

| NUM

R* ::= EXPR

September 29, 2023

31/99

Finite automata

Finite automata are, in essence, very weak computers, or models of
computation.

They describe transitions between states in some model.
Use input symbols belonging to an alphabet Σ.

A deterministic finite automaton F is a quintuple ⟨Q,Σ, δ, q0,F ⟩.
Q is the set of states.
δ is a transition function.
q0 is the start state.
F is the set of accepting states.

September 29, 2023

32/99

Regular languages

Regular languages are languages recognized by a deterministic finite
automaton.

Any DFA can be converted into a regular expression and vice versa.

See the book for details on the syntax.

September 29, 2023

33/99

Lexical analysis

Lexical analysis involves assigning meaning to sequences of characters.

Example: in a string containing “1 + 23 · 41”, we might tokenize
these lexemes by assigning the token Number to the lexemes ‘1’,
‘23’, and ‘41’.

We use lexical analysis primarily when designing the grammar of a
programming language.

September 29, 2023

34/99

Syntactic analysis

Syntactic analysis, also called parsing, is determining whether a
sequence of tokens conform to a language grammar.

When parsing tokens, we build data structures called parse trees,
which are then converted into abstract syntax trees.

Parse trees are hierarchical representations of tokens.

September 29, 2023

35/99

Abstract syntax trees

Whereas parse trees describe the syntactic structure of an input,
abstract syntax trees explains the relationships between subtrees.

Abstract syntax trees strip extraneous characters such as separators
that do not contribute to a node in the tree.

Example: AST of ‘((9 8 +) (17 81 −) ·)’:
Mult

Sub

8117

Add

89

September 29, 2023

36/99

λ-calculus

The λ-calculus in the early 1930s is an abstract machine for modeling
computation.

We have variables, x , y , ..., z , function definitions/abstractions λv .B
where v is a variable and B is a λ-calculus term, and function
application (M N) where M and N are λ-calculus terms.

Seems limited at first glance, but we can represent many
computations and programs with the λ-calculus.

Very, very, very slow from a performance standpoint, but that wasn’t
Alonzo Church’s point!

September 29, 2023

37/99

Programming and Design

September 29, 2023

38/99

What language for our language?

To explore concepts in programming languages and computer science,
we need to actually start programming!

We will develop our own programming language in due time.

Until then, we need to get familiar with C: the language of choice.

Why C?

It’s small
It’s fast
Tried and tested (to some degree)

September 29, 2023

39/99

“Hello, world!” in C

Refer to the book for a more in-depth explanation.

#include <stdio.h>

int main(void) {

printf("Hello, world!\n");

return 0;

}

September 29, 2023

40/99

Recursive functions in C

Example of addition:

#include <stdio.h>

int add(int n, int m) {

if (m == 0) {

return n;

} else {

return 1 + add(n, m - 1);

}

}

int main(void) {

printf("%d\n", add(3, 4));

return 0;

}

September 29, 2023

41/99

Conditionals

Conditionals allow us to make decisions in our program.

Change control flow.

The conditional expressions must resolve to either true or false.

int main(void) {

int x = 0;

if (someCondition) {

x = 5;

} else if (someOtherCondition) {

x = 10;

} else {

x = -1;

}

return 0;

}

September 29, 2023

42/99

Pointers

Passing values as arguments to functions is by value.

Modifying that value inside the function does not change its value on
the outside.

void swap(int x, int y) {

int tmp = x;

x = y;

y = tmp;

}

Pointers are locations in memory.

We can use them to pass a reference to the variables we want to
update inside the function.

void swap(int *x, int *y) {

int tmp = *x;

*x = *y;

*y = tmp;

}

September 29, 2023

43/99

Arrays

Arrays, of course, are fixed-sized data structures.

Size must be known at compile-time.

Indices are indexed from zero.

If we don’t know the size at compile-time, use malloc.

int main(void) {

int[] arr = new int[5];

arr[0] = 5;

arr[1] = 10;

arr[2] = 20;

arr[3] = 40;

arr[4] = 45;

return 0;

}

September 29, 2023

44/99

Strings

Strings are nothing more than an array of characters.

String literals are immutable.

int main(void) {

const char *s1 = "Hello, world!";

char[] s2 = "Hello, world!";

s2[5] = '?';
return 0;

}

September 29, 2023

45/99

Loops (1)

While loops are for repeating a task an indeterminate number of
times.

Example: Collatz conjecture.

int main(void) {

int n = ...;

int i = 0;

while (n != 1) {

if (n % 2 == 0) {

n = n / 2;

} else {

n = 3 * n + 1;

}

i++;

}

return 0;

}

September 29, 2023

46/99

Loops (2)

For loops are used when we want to repeat a task a determinate
number of times.

Example: computing factorial of n.

int main(void) {

int n = ...;

int res = 1;

for (int i = 1; i <= n; i++) {

res *= i;

}

return 0;

}

September 29, 2023

47/99

Structs

Structs allow us to group data to make an “object” of sorts.

Example: consider a student struct.

struct student {

char id[256];

double gpa;

};

int main(void) {

struct student s1;

strcpy(s1.id, "Katherine");

s1.gpa = 4.0;

struct student *s2 = malloc(sizeof(student));

strcpy(s2->id, "Bjarne");

s1.gpa = 3.5;

return 0;

}

September 29, 2023

48/99

Unions

Unions let you store multiple types of values under one “umbrella”.

union data {

int number;

char ch;

char *string;

bool val;

}

int main(void) {

union data v1, v2, v3;

v1.number = 5;

v2.ch = 'A';
v3.val = false;

return 0;

}

September 29, 2023

49/99

LPF1: A prefix arithmetic language

To start things small, we will interpret a prefixed arithmetic language.

expr ::= application

| datum

| comment

application ::= ‘(’ expr* ‘)’

| ‘[’ expr* ‘]’

| ‘{’ expr* ‘}’
datum ::= number

| symbol

comment ::= ‘;’ (. - ‘\n’)*
number ::= (‘+’|‘-’)? (digit)+ (‘.’ (digit) *)?

symbol ::= symchar (symchar | number)*

pf1 ::= expr+

September 29, 2023

50/99

Representation independence with respect to ASTs

Our programming languages will make use of Daniel Holden’s mpc
library, specifically for generating ASTs.

Problem: what if we want to swap this library out in the future?

Solution: write functions that tap into the library and use these
functions in our interpreter.

We will revisit representation independence multiple times.

September 29, 2023

51/99

LPF2: Now with environments!

A programming language without variables is pretty lame.

We need to introduce the notion of environments.

An environment binds identifiers to their values. E.g.,

(define x 5)

(define y 6)

We define the association x 7→ 5 and y 7→ 6.

September 29, 2023

52/99

Interpretation

September 29, 2023

53/99

LCOND: Conditionals and Decisions

Conditionals, as we saw in our C primer, allow us to divert program
control based on decisions.

To ease our transition, we first introduce a language with only
booleans, then boolean expressions, then conditional expressions.

expr ::= application | ...

application ::= cond | if | ...

cond ::= ‘(cond’ cond-clause* else-clause ‘)’

cond-clause ::= ‘[’ expr ‘ ’ expr ‘]’

else-clause ::= ‘[’ ‘else’ ‘ ’ expr ‘]’

if ::= ‘(if ’ expr ‘ ’ expr ‘ ’ expr‘)’

September 29, 2023

54/99

LLOCAL: Local identifiers and values

Our language is lexically-scoped, meaning identifiers obtain their
values by when they were declared.

Introduces let, let* bindings.

expr ::= application | ...

application ::= let | letstar | ...

let ::= ‘let (’ let-bndg+ ‘)’ expr

letstar ::= ‘let* (’ let-bndg+ ‘)’ expr

let-bndg ::= id ‘ ’ expr

September 29, 2023

55/99

LPROC1 & LPROC2: Recursive procedures

Functions, or procedures, define a callable section of code with or
without parameters.

Their definition comes through lambda, which means we can define
anonymous and non-anonymous functions.

expr ::= application | ...

application ::= proc | ...

proc ::= ‘lambda’ ‘(’ id* ‘)’ expr

September 29, 2023

56/99

LLETREC: One more time with letrec

Sometimes, we do not want to expose a function definition into the
global namespace.

Solution: we can define functions inside a let or let* block.

Problem: these functions cannot be recursive.

Solution: use letrec!

September 29, 2023

57/99

Different datatypes

Restricting ourselves to working with only integers, booleans, and
functions is unnecessary.

We provide descriptions for three languages: LCHAR, LSTRING, and
LEQUAL.

LCHAR describes operations for working with single characters.
LSTRING allows us to create and manipulate strings.
LEQUAL defines predicates for determining equality amongst values.

September 29, 2023

58/99

Functional Programming

September 29, 2023

59/99

LQUOTE: Quoted expressions

How can we turn code into data?

Quoting!

’(+ 2 3) resolves to (+ 2 3).

What might this lead us towards?

September 29, 2023

60/99

LLIST: Pairs and lists

We need some type of data structure.

Pairs contain a first and a rest.

We create pairs using cons, and reference the elements using first

and rest.

first returns the first item of the pair.

rest returns the second item of the pair, or the rest of the list if
called on a list.

September 29, 2023

61/99

LQUASI: Quasiquotes

Quoted data is fun, but what does this evaluate to?

(define x 5)

(define y 6)

’(10 30 x 50 60 y)

’(10 30 x 50 60 y)... would it not be more sensible to resolve the
x and y?

Quasiquoting and unquoting allows us to do this!
`(10 30 ,x 50 60 ,y)

September 29, 2023

62/99

LVARIADIC: Support for variadic-argument functions

A function that is defined to receive any number of arguments is
called variadic.

Under the hood, we translate these into a list of arguments.

The function processes these arguments as if they were received a list
of values.

September 29, 2023

63/99

First-class & Higher-order functions

In our language and other functional programming languages,
functions are first-class citizens, meaning they can be passed around
as arguments to functions and returned from functions.

Example:

(define compute-bill

(λ (tip-pt)

(λ (tax-pt)

(λ (sub serv)

(let ([tax-amt

(+ sub

(* sub

(/ tip-pt 100)))])

(+ (+ tax-amt

(* (/ tax-pt 100)

tax-amt))

serv))))))

September 29, 2023

64/99

LEVAL: Evaluation and application

We have a way of converting code into data via quoting, but what
about the other way around?

Two new forms: eval and apply.

eval receives a quoted expression, or data, and attempts to evaluate
it. E.g., (eval ’(+ 2 3)) resolves to 5.

apply applies a function to a list of arguments. E.g., (apply cons

’(2 3)) resolves to (2 . 3).

September 29, 2023

65/99

Accumulator-passing style

Accumulators are values that we construct when a function is in
tail-position.

A function call is in tail position if it is the last action performed
before a “return”.

We accumulate the result in a parameter, hence the term
“accumulator-passing style”.

September 29, 2023

66/99

Continuation-passing style

A continuation is, in effect, “the rest of a computation”.

We use continuations to direct program control to where we want it
to go next.

E.g., k is the continuation!

(define fact-cps

(λ (n k)

(cond

[(zero? n) (k 1)]

[else

(fact-cps (sub1 n)

(λ (v)

(k (* n v))))])))

We invoke this by (fact-cps 5 (λ (v) v))

September 29, 2023

67/99

Nested interpreters

Our language is now powerful enough to where we can write
interpreters from within the interpreter! We call this nested
interpretation.

For nested languages, we need to define recognizer functions and
reducer functions.

Recognizer functions determine whether a value represents some
structure.
Reducer functions evaluate the structured data.

Tons and tons of examples in the book.

September 29, 2023

68/99

Imperative Programming

September 29, 2023

69/99

LSET: Assignment statements

C allows us to reassign variables after their initialization.

Until now, our language does not let us.

Doing so raises questions about the purity of our language.

expr ::= application | ...

application ::= set | setfirst | setrest | ...

set ::= ‘set! ’ symbol expr

setfirst ::= ‘set-first! ’ symbol expr

setrest ::= ‘set-rest! ’ symbol expr

September 29, 2023

70/99

LBEGIN: Sequential expressions

Assignment statements, e.g., set!, do not return a value.

Therefore, we should add a construct that allows us to chain
statements and expressions in a sequence.

How does this help us? Closures are now easier to visualize.

expr ::= application | ...

application ::= begin | ...

begin ::= ‘begin ’ expr+

September 29, 2023

71/99

LOUT: Fancier output

In C we use printf for formatted output. We can output strings,
booleans, integers, whatever we wish.

expr ::= application | ...

application ::= printf | ...

printf ::= ‘printf’ expr expr*

September 29, 2023

72/99

Parameter-passing styles

Pass-by-value: pass a copy of each argument to functions.

Pass-by-reference: pass a memory reference of each argument to
functions. Mutating a value in the function modifies the value outside
as well.

Lazy evaluation by name: evaluate arguments only as they are
referenced in the body of a function.

Lazy evaluation by need: evaluate arguments only as they are
referenced in the body of a function, but save the result of the
expression to avoid recomputation.

September 29, 2023

73/99

LVECTOR: Static data structures

Pairs and lists are dynamic data structures; i.e., they are resizable.

Vectors are like C arrays; they cannot be resized after their
declaration, but provide constant lookup times.

expr ::= application | ...

application ::= vector

| vector-set

| vector-get

| ...

vector ::= ‘make-vector’ expr

vector-set ::= ‘vector-set!’ id expr expr

vector-get ::= ‘vector-get’ id expr

September 29, 2023

74/99

LLIB: External libraries

Libraries, or auxiliary files with function definitions, prevent the need
to constantly rewrite functions.

Requires careful parsing; how do we handle circular dependencies or
duplicate function definitions?

expr ::= application | ...

application ::= include | ...

include ::= ‘include ’ string

September 29, 2023

75/99

LBIGNUM: Arbitrarily-precise numbers

Using only 64-bit double numbers limits our program capabilities.
What if we want to work with arbitrarily large values?

No new language features aside from reworking our s-value for
numbers to use gmp and mpfr.

To simplify successive discussions, we will not use LBIGNUM following
this section.

September 29, 2023

76/99

LIN: Improved user input

In C we can use getline and fgets to read strings in from different
sources.

We then parse these using sscanf or some other roughly-equivalent
function.

LIN adds read-string and read-number for reading strings and
numbers, respectively, from standard input.

September 29, 2023

77/99

LFILE I/O: File input and output

Working with files is a prominent part of programming and software
development.

In C we use FILE and auxiliary functions to read data from files.

LFILE I/O uses the C primitives to add support for reading from and
writing to files.

September 29, 2023

78/99

LLOOP: An iterative approach to problem-solving

Recursion is a great and powerful concept, but we can very easily
overflow the procedure call stack.

Moreover, some concepts are harder to understand when the only tool
at our disposal is recursion.

LLOOP adds a do loop construct, which functions identically to a
while loop in C.

expr ::= application | ...

application ::= do | ...

do ::= ‘do ’ expr expr

September 29, 2023

79/99

LMACRO: A simple macro system

Macros are textual substitutions in code.

We use the preprocessor in C, but we do not have such a thing in our
language.

What do macros give us? Lots of helpful language constructs that are
otherwise impossible or cumbersome, e.g., promises.

expr ::= application | ...

application ::= macro | ...

macro ::= ‘define-macro (’ id id* ‘)’ expr

September 29, 2023

80/99

Compilation

September 29, 2023

81/99

An assembly primer

We will write a small compiler for our language.

Recall that compilers, in general, target machine-dependent assembly
language; we will choose x86/64 assembly.

Compilers are much faster than interpreters, hence the desire!

Assembly is mnemonic-driven; small instructions to do small tasks.
We operate primarily on registers: 64-bit slots for values on the CPU.

movq %rax, %rbx moves the data from register %rax into register
%rbx.

September 29, 2023

82/99

Compiling L−
PF1 to L−

PF1x64

Our first language supports printing only constant integer values.

expr ::= ‘(call (print’ ‘ ’ constant ‘))’

constant ::= [0-9]+

pf1- ::= expr*

After this we expand out to include simple binary operations and
expressions.

expr ::= ‘(call (print’ ‘ ’ (constant | arithexpr) ‘))’

arithexpr ::= ‘(’ binop ‘ ’ constant ‘ ’ constant ‘)’

binop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

constant ::= [0-9]+

pf1 ::= expr*

September 29, 2023

83/99

Compiling LPF2 to LPF2x64

We want to support variables; let’s add those! All variables are
allocated on the stack. Inefficient, but simple.

expr ::= call

| var

| arithexpr

| constant

| id

call ::= ‘(call (print’ ‘ ’ expr ‘))’

var ::= ‘(var ’ id ‘ = ’ expr‘)’

arithexpr ::= ‘(’ binop binopval binopval ‘)’

binopval ::= {call | constant | id};
id ::= [a-zA-Z]+

pf2 ::= expr*

September 29, 2023

84/99

Compiling L−
COND to L−

CONDx64

Before we compile conditionals, we should get boolean expressions to
work.

expr ::= cmp-expr | ...

cmp-expr ::= ‘(’ cmp-op ‘ ’ expr ‘ ’ expr ‘)’

cmp-op ::= ‘?=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’

cond- ::= expr*

After this we can add an if statement.

expr ::= if | ...

if ::= ‘(if ’ expr expr expr ‘)’

cond ::= expr*

September 29, 2023

85/99

Compiling L+
COND to L+

CONDx64

Programming languages aren’t very powerful without some way to
repeat an action.

Since we do not yet have procedures, we cannot implement recursion.

expr ::= while | ...

while ::= ‘(while ’ expr ‘ ’ expr ‘)’

condplus ::= expr*

September 29, 2023

86/99

Compiling L−
PROC to L−

PROCx64

On the journey to functions, we will first implement subroutines: or
functions that do not receive nor return values.

expr ::= proc | ...

proc ::= ‘(proc ’ id ‘ ’ ‘(’ id* ‘)’ lstmt ‘)’

lstmt ::= expr lstmt | expr

id ::= [a-zA-Z]+

proc- ::= expr*

September 29, 2023

87/99

Compiling LPROC to LPROCx64

Subroutines are boring!

expr ::= call | proc

call ::= ‘(call ’ id ‘(’ expr* ‘))’

procdecl ::= ‘(proc ’ id ‘(’ id* ‘)’ expr* ‘)’

proc ::= expr+

September 29, 2023

88/99

Compiling L+
PROC to L+

PROCx64

Some functions do not compile correctly in LPROCx64
. We need to fix

them!

Problem: we delay setting argument registers until after all
arguments are evaluated.

Solution: evaluate the arguments to a function in reverse, push the
result to the stack via pushq. Then, once all arguments have been
evaluated, pop the results off the stack into the appropriate
argument-registers via popq.

September 29, 2023

89/99

Compiling LARRAY to LARRAYx64

We need a data structure to make this a truly powerful language!
Let’s implement stack-allocated arrays.

expr ::= getindex | setindex | ...

decl ::= arraydecl | ...

arraydecl ::= ‘(array ’ number ‘)’

getindex ::= ‘(get-index ’ id ‘ ’ expr ‘)’

setindex ::= ‘(set-index ’ id ‘ ’ expr ‘ ’ expr ‘)’

array ::= decl* expr*

September 29, 2023

90/99

Compiling LFLOAT to LFLOATx64

We already store integers in registers; can we not do the same for
floating-point values?

Answer: no! Floating-point values are considerably more difficult to
tackle.

We cannot use local variables; everything is declared in the data
segment.

expr ::= arithexpr | setexpr | callexpr

callexpr ::= ‘(call ’ id id* ‘)’

proc ::= ‘(proc main ()’ ‘(’ expr+ ‘))’

constant ::= number

float ::= vardecl* proc

September 29, 2023

91/99

Memory Management

September 29, 2023

92/99

Stack-allocated (static) memory

The stack is a small section of memory for local variable declarations
(not using malloc or its derivatives).

We also use the stack for function calls, i.e., function arguments,
return values, and so forth are stored in activation records.

When a function returns, its activation record is removed from the
stack, thereby removing all stack-declared variables.

September 29, 2023

93/99

Heap-allocated (dynamic) memory

The heap is a collection of blocks that our program can “tap into”
when allocating memory at runtime.

We have seen this with functions, e.g., malloc, calloc, realloc,
strdup, and so forth.

In C, we have to free this memory, otherwise we cause a memory
leak.

September 29, 2023

94/99

Garbage collection

Scheme is particularly tricky to allocate/deallocate memory for,
because the lifetime of a function/variable is not always unknown.

Deallocating at the wrong time will cause an undefined variable
reference or crash the interpreter.

A garbage collector keeps track of “live” heap references and
deallocates these chunks when nothing points to them (i.e., they are
no longer live).

September 29, 2023

95/99

Garbage collection (cont)

We write two garbage collectors in the book: a simple one and a
reference-counted garbage collector.

The simple garbage collector simply keeps track of the allocations
made and frees them before ending the program.

Incredibly simple, but not very useful.

The reference-counted garbage collector counts each pointer to an
object in memory; once that number reaches zero for an object, it is
no longer reachable and its memory is freed.

September 29, 2023

96/99

Event-Driven Programming

September 29, 2023

97/99

Concurrent programming

Our programs so far have been loaded in via files. What if we want to
run a program and make changes on the fly?

We can implement a read-evaluate-print-loop.

Problem: our system has to constantly listen for input and be ready
to receive it, so how can the system also evaluate expressions in the
interpreter?

Solution: multithreading!

September 29, 2023

98/99

Threading

Threads manage separated sequence of actions for the current
program to execute.

Problem: multithreading opens the nasty can of worms that contains
data races/race conditions. Race conditions are “competitions” for a
piece of data; one thread might write into a value using an old value
and another thread can then use an incorrect value.

Solution: mutexes and condition variables!

September 29, 2023

99/99

Multithreading and garbage collection

Previous versions of our garbage collectors were “stop the world”
garbage collectors, i.e., interpretation stops to wait for the collector to
finish.

Stop the world garbage collectors are slow!

We can integrate multithreading into the mix and use a separate
thread for our reference-counted garbage collector.

September 29, 2023

