Principles of Computer Science

An Invigorating, Hands-On Approach

Joshua Crotts

A Logic Primer

What is logic?

- Logic is the use of deductive reasoning to analyze an argument.
- Arguments are comprised of premises and conclusions.
- Premises describe the reasoning of an argument.
- A conclusion is what follows from the premises.

Truth values and connectives

- Propositions are statements that are either true or false.
- E.g., "The sky is blue", " $2+2=5$ "
- We assign truth values, i.e., "true" or "false", to a proposition.
- Connectives allow us to modify the truth value of propositions and conjoin propositions.
- Five connectives in zeroth-order logic: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$

Logical negation

- In most instances, for any proposition ' p ', it is safe to use the phrase, "It is not the case that ' p ' is true", to represent the logical negation of ' p '.
- Problem: sentences do not have a straightforward binary conversion between non-negation and negation.
- Truth table:

$$
\begin{array}{c|c}
p & \neg p \\
\hline \mathrm{~T} & \perp \\
\perp & \top
\end{array}
$$

Logical conjunction

- Represents the connection of propositions with non-symbolic words such as "and" and "but".
- Both operands of a schema must be true for the logical conjunction to be true.
- Truth table:

$$
\begin{array}{cc|c}
p & q & p \wedge q \\
\hline \top & \top & \top \\
\top & \perp & \perp \\
\perp & \top & \perp \\
\perp & \perp & \perp
\end{array}
$$

Logical disjunction

- Represents the truth of at least one of two schema using phrases like "or".
- Logical disjunction is inclusive-or.
- Truth table:

p	q	$p \vee q$
\top	\top	\top
\top	\perp	\top
\perp	\top	\top
\perp	\perp	\perp

Logical conditional

- Determines the truth conditions for a relationship between schema.
- When the antecedent is true and the consequent is false, the conditional is false.
- "Implication is the validity of the conditional".
- Truth table:

p	q	$p \rightarrow q$
\top	\top	\top
\top	\perp	\perp
\perp	\top	\top
\perp	\perp	\top

Logical biconditional

- True if both operands of the biconditional are the same.
- "Equivalence" is the validity of the biconditional".
- Truth table:

$$
\begin{array}{cc|c}
p & q & p \leftrightarrow q \\
\hline \top & \top & \top \\
\top & \perp & \perp \\
\perp & \top & \perp \\
\perp & \perp & \top
\end{array}
$$

Quantifiers

- In first-order logic we use quantifiers for one reason: as their name suggests, they quantify, or provide numeric amounts to, some entity.
- Universal quantifier:
- To say that "All math majors are smart", we use predicates and variables: ' $\forall x(M(x) \rightarrow S(x))$ '
- We say $S(x)$ means x is smart, and $M(x)$ represents x is a math major.
- Existential quantifier:
- To say that "Some math majors are computer science majors", we use ' $\exists x(M(x) \wedge C(x))$ '.
- We say $C(x)$ means x is a computer science major.

Identity

- Identity allows us to denote reference a particular entity.
- E.g., "Anyone who is the best computer science is Katherine Johnson":
- $\quad \forall x(C(x) \rightarrow \forall y((C(y) \wedge B(x, y)) \rightarrow x=k)) '$
- We say $B(x, y)$ means x is better than y.
- Identity is a predicate; returns true or false if the identity relationship holds.

Set theory

- A set S is an unordered non-duplicate collection of values.
- An element x is in S means $x \in S$.
- The number of elements in a set S is denoted as $|S|$ also called the cardinality.
- A subset of S, namely S^{\prime}, is denoted as $S^{\prime} \subseteq S$ if all elements of S^{\prime} are elements of S.
- Two sets are equivalent if they are subsets of each other.

More about set theory

- The union of two sets S and T, i.e., $S \cup T$, is defined as the set of elements that are in either S or T or both.
- The intersection of two sets S and T, i.e., $S \cap T$, is defined as the set of elements that are in both S and T.
- The difference of two sets S and T, i.e., $S-T$, is defined as the set of elements that are in S but not in T.
- Some common mathematical sets: natural numbers \mathbb{N}, the integers \mathbb{Z}, the rationals \mathbb{Q}, the reals \mathbb{R}, and the complex numbers \mathbb{C}.

Functions

- Functions are maps between sets called the domain and the range.
- E.g., $f(x)=x+5$ maps any number x to the set of x plus five. For instance, $f(5)=10$.
- Substitute the function parameters, i.e., x, for the arguments, i.e., 5 .
- We can write functions of multiple arguments:

$$
\begin{aligned}
g(x, y, z) & =3 x^{2}+4 y+z \\
g(10,2,3) & =3(10)^{2}+4(2)+3 \\
& =311
\end{aligned}
$$

Recursive functions

- A recursive function is a function that calls itself.
- Think of addition: if we add two values n and m, we know that $n+0=n$. To solve $n+m$, we should solve $n+(m-1)$. Then, we can propagate the result back up. Assume we know how to add and subtract one.
- E.g.,

$$
\begin{aligned}
\operatorname{add}(3,4) & =3+4 \\
& =1+(3+3) \\
& =1+(1+(3+2)) \\
& =1+(1+(1+(3+1))) \\
& =1+(1+(1+(1+(3+0)))) \\
& =1+1+1+1+3
\end{aligned}
$$

Data Structures

What are data structures?

- Data structures store data!
- Different ways of storing data for performance, space optimization, and so forth.
- Many are simple, some are wildly complex.

Arrays

- Arrays are contiguous blocks of storage where each block contains space for n elements of a given type.
- An advantage to using arrays are their quick access times.
- A disadvantage of arrays is that they are not resizable, their size must be known before creation.
- Arrays cannot store differing types; i.e., we can't store a string and an integer in the same array.

Array Lists

- Like arrays, array lists store elements of a type. Unlike arrays, they are resizable!
- Advantages:
- Most implementations are quick to set up and understand, which leads to their widespread usage compared to other data structures.
- As we said, they are resizable.
- Insertion of new elements is easy.
- Disadvantages:
- Easy to use, but not performant. Insertion and removal of elements is slow.

Linked Lists

- Linked lists are a series of nodes, or elements, linked together in a chain of sorts.
- Advantages:
- Insertion, addition, and removal is quick! No need to resize/shift values.
- Disadvantages:
- Element/index retrieval is slow; we no longer have contiguous elements in memory.

Stacks

- The stack data structure is a collection of elements that operate on the principle of last-in-first-out, or LIFO.
- The last thing that we enter is the first thing removed.
- Advantages:
- Fast insertion and removal operations via push and pop.
- Disadvantages:
- Not as flexible as arrays or lists; cannot access arbitrary elements.

Queue

- The queue data structure is a collection of elements that operate on the principle of first-in-first-out, or FIFO.
- The first thing that we enter is the first thing removed.
- Advantages:
- Fast insertion and removal operations via enqueue and dequeue.
- Disadvantages:
- Not as flexible as arrays or lists; cannot access arbitrary elements.

Sets

- Sets are similar to their mathematical counterpart; collection of unordered and non-duplicate elements.
- Advantages:
- Easy to add and remove elements; we can also query the set for item presence.
- Disadvantages:
- No ordering to values; no "indices" to elements of a set.

Maps

- Maps are association pairs/relationships. These pairs have a key and a corresponding value.
- Advantages:
- Easy to determine whether a key exists in the map.
- Trivial to setup a relationship between two values.
- Disadvantages:
- No ordering to key/value pairs.

Trees

- Trees are like linked lists, but there are potentially multiple links to a node.
- Trees are recursive data structures because the elements of a tree are trees themselves.
- E.g., binary trees are nodes with at most two children.
- Advantages:
- Easy to describe relationships with real-world systems, e.g., mathematical structures, and even file systems.
- Disadvantages:
- Hard to design, can become "left" or "right" leaning, decreasing performance.

Graphs

- A graph is a tuple $\langle V, E\rangle$, where V is the set of vertices, or nodes, and E is the set of edges.
- Edges are tuples, which serve as links between vertices.
- Edges can have a direction or be bidirectional.
- Edges in a graph may also be either weighted or unweighted, denoting a "cost".
- Advantages:
- Applicable to lots of real-world concepts.
- Disadvantages:
- Hard to write algorithms for, and can be costly in terms of performance and space.

Formal Languages

What are languages?

- To talk about languages, we first need to define an alphabet.
- Alphabets are sets, Σ, where each element is a distinct symbol or a grouping of symbols.
- A language L over an alphabet Σ is a subset of Σ where each element is an arrangement, or a permutation, of the alphabet.

Grammars

- Grammars describe the syntax of a language.
- We define a grammar G as a set of terminals T, a set of non-terminals T^{\prime}, and a set of production rules R.
- A terminal is an atomic literal result of a production rule.
- A non-terminal is a set of possible paths that a string can take in a production rule.
- Production rules combine and define the relationship between terminals and non-terminals.

Backus-Naur Form grammars

- (Extended) Backus-Naur Form grammars are a formalism to grammatical language constructions.
- Example of an BNF grammar for a prefix notation arithmetic expression language:

```
T ll" |" |" "1" | ... | "9" | "+" | "-" | "*" | "/"
```


Finite automata

- Finite automata are, in essence, very weak computers, or models of computation.
- They describe transitions between states in some model.
- Use input symbols belonging to an alphabet Σ.
- A deterministic finite automaton F is a quintuple $\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$.
- Q is the set of states.
- δ is a transition function.
- q_{0} is the start state.
- F is the set of accepting states.

Regular languages

- Regular languages are languages recognized by a deterministic finite automaton.
- Any DFA can be converted into a regular expression and vice versa.
- See the book for details on the syntax.

Lexical analysis

- Lexical analysis involves assigning meaning to sequences of characters.
- Example: in a string containing " $1+23 \cdot 41$ ", we might tokenize these lexemes by assigning the token Number to the lexemes ' 1 ', ' 23 ', and ' 41 '.
- We use lexical analysis primarily when designing the grammar of a programming language.

Syntactic analysis

- Syntactic analysis, also called parsing, is determining whether a sequence of tokens conform to a language grammar.
- When parsing tokens, we build data structures called parse trees, which are then converted into abstract syntax trees.
- Parse trees are hierarchical representations of tokens.

Abstract syntax trees

- Whereas parse trees describe the syntactic structure of an input, abstract syntax trees explains the relationships between subtrees.
- Abstract syntax trees strip extraneous characters such as separators that do not contribute to a node in the tree.
- Example: AST of ' $((98+)(1781-) \cdot)$ ':

Mult

λ-calculus

- The λ-calculus in the early 1930 s is an abstract machine for modeling computation.
- We have variables, x, y, \ldots, z, function definitions/abstractions $\lambda v . B$ where v is a variable and B is a λ-calculus term, and function application ($M N$) where M and N are λ-calculus terms.
- Seems limited at first glance, but we can represent many computations and programs with the λ-calculus.
- Very, very, very slow from a performance standpoint, but that wasn't Alonzo Church's point!

Programming and Design

What language for our language?

- To explore concepts in programming languages and computer science, we need to actually start programming!
- We will develop our own programming language in due time.
- Until then, we need to get familiar with C : the language of choice.
- Why C?
- It's small
- It's fast
- Tried and tested (to some degree)

"Hello, world!" in C

- Refer to the book for a more in-depth explanation.

```
#include <stdio.h>
int main(void) {
    printf("Hello, world!\n");
    return 0;
}
```


Recursive functions in C

- Example of addition:

```
#include <stdio.h>
int add(int n, int m) {
    if (m == 0) {
        return n;
    } else {
        return 1 + add(n,m - 1);
    }
}
int main(void) {
    printf("%d\n", add(3, 4));
    return 0;
}
```


Conditionals

- Conditionals allow us to make decisions in our program.
- Change control flow.
- The conditional expressions must resolve to either true or false.

```
int main(void) {
    int x = 0;
    if (someCondition) {
        x = 5;
    } else if (someOtherCondition) {
        x = 10;
    } else {
        x = -1;
    }
    return 0;
}
```


Pointers

- Passing values as arguments to functions is by value.
- Modifying that value inside the function does not change its value on the outside.

```
void swap(int x, int y) {
    int tmp = x;
    x = y;
    y = tmp;
}
```

- Pointers are locations in memory.
- We can use them to pass a reference to the variables we want to update inside the function.

```
void swap(int *x, int *y) {
    int tmp = *x;
    *x = *y;
    *y = tmp;
}
```


Arrays

- Arrays, of course, are fixed-sized data structures.
- Size must be known at compile-time.
- Indices are indexed from zero.
- If we don't know the size at compile-time, use malloc.

```
int main(void) {
    int[] arr = new int[5];
    arr[0] = 5;
    arr[1] = 10;
    arr[2] = 20;
    arr[3] = 40;
    arr[4] = 45;
    return 0;
}
```


Strings

- Strings are nothing more than an array of characters.
- String literals are immutable.

```
int main(void) {
    const char *s1 = "Hello, world!";
    char[] s2 = "Hello, world!";
    s2[5] = '?';
    return 0;
}
```


Loops (1)

- While loops are for repeating a task an indeterminate number of times.
- Example: Collatz conjecture.

```
int main(void) {
    int n = ...;
    int i = 0;
    while (n != 1) {
        if (n % 2 == 0) {
            n}=\textrm{n}/2
        } else {
            n}=3*\textrm{n}+1
        }
        i++;
    }
    return 0;
}
```


Loops (2)

- For loops are used when we want to repeat a task a determinate number of times.
- Example: computing factorial of n.

```
int main(void) {
    int n = ...;
    int res = 1;
    for (int i = 1; i <= n; i++) {
        res *= i;
    }
    return 0;
}
```


Structs

- Structs allow us to group data to make an "object" of sorts.
- Example: consider a student struct.

```
struct student {
    char id[256];
    double gpa;
};
int main(void) {
    struct student s1;
    strcpy(s1.id, "Katherine");
    s1.gpa = 4.0;
    struct student *s2 = malloc(sizeof(student));
    strcpy(s2->id, "Bjarne");
    s1.gpa = 3.5;
    return 0;
}
```


Unions

- Unions let you store multiple types of values under one "umbrella".

```
union data {
    int number;
    char ch;
    char *string;
    bool val;
}
int main(void) {
    union data v1, v2, v3;
    v1.number = 5;
    v2.ch = 'A';
    v3.val = false;
    return 0;
}
```


$\mathcal{L}_{\text {PF1 }}$: A prefix arithmetic language

- To start things small, we will interpret a prefixed arithmetic language.

Representation independence with respect to ASTs

- Our programming languages will make use of Daniel Holden's mpc library, specifically for generating ASTs.
- Problem: what if we want to swap this library out in the future?
- Solution: write functions that tap into the library and use these functions in our interpreter.
- We will revisit representation independence multiple times.

$\mathcal{L}_{\text {PF2 } 2}:$ Now with environments!

- A programming language without variables is pretty lame.
- We need to introduce the notion of environments.
- An environment binds identifiers to their values. E.g., (define x 5) (define y 6)

We define the association $x \mapsto 5$ and $y \mapsto 6$.

Interpretation

$\mathcal{L}_{\text {COND }}:$ Conditionals and Decisions

- Conditionals, as we saw in our C primer, allow us to divert program control based on decisions.
- To ease our transition, we first introduce a language with only booleans, then boolean expressions, then conditional expressions.

```
expr ::= application | ...
application ::= cond | if | ...
cond ::= '(cond' cond-clause* else-clause ')'
cond-clause ::= '[' expr ' ' expr ']'
else-clause ::= '[' 'else' ' ' expr ']'
if ::= '(if ' expr ' ' expr ' ' expr')'
```


$\mathcal{L}_{\text {LOCAL: }}$ Local identifiers and values

- Our language is lexically-scoped, meaning identifiers obtain their values by when they were declared.
- Introduces let, let* bindings.

expr	$::=$ application $\mid \ldots$	
application	$::=$ let \| letstar	...
let	$::=$ 'let (' let-bndg+')' expr	
letstar	$::=$ 'let* (' let-bndg+')' expr	
let-bndg	$::=$ id', expr	

$\mathcal{L}_{\text {PROC1 }} \& \mathcal{L}_{\text {PROC2 }}:$ Recursive procedures

- Functions, or procedures, define a callable section of code with or without parameters.
- Their definition comes through lambda, which means we can define anonymous and non-anonymous functions.

```
expr ::= application | ...
application ::= proc|...
proc ::= 'lambda' '(' id* ')' expr
```


$\mathcal{L}_{\text {Letrec }}:$ One more time with letrec

- Sometimes, we do not want to expose a function definition into the global namespace.
- Solution: we can define functions inside a let or let* block.
- Problem: these functions cannot be recursive.
- Solution: use letrec!

Different datatypes

- Restricting ourselves to working with only integers, booleans, and functions is unnecessary.
- We provide descriptions for three languages: $\mathcal{L}_{\text {CHAR }}, \mathcal{L}_{\text {STRING }}$, and $\mathcal{L}_{\text {EQUAL }}$.
- $\mathcal{L}_{\text {CHAR }}$ describes operations for working with single characters.
- $\mathcal{L}_{\text {String }}$ allows us to create and manipulate strings.
- $\mathcal{L}_{\text {EQUAL }}$ defines predicates for determining equality amongst values.

Functional Programming

$\mathcal{L}_{\text {Quote: }}:$ Quoted expressions

- How can we turn code into data?
- Quoting!
- '(+ 2 3) resolves to (+ 23).
- What might this lead us towards?

$\mathcal{L}_{\text {LIST: }}$ Pairs and lists

- We need some type of data structure.
- Pairs contain a first and a rest.
- We create pairs using cons, and reference the elements using first and rest.
- first returns the first item of the pair.
- rest returns the second item of the pair, or the rest of the list if called on a list.

$\mathcal{L}_{\text {QuAsI: }}$ Quasiquotes

- Quoted data is fun, but what does this evaluate to?
(define x 5)
(define y 6)
' (10 30 x 5060 y)
' (10 $30 \times 5060 \mathrm{y}$)... would it not be more sensible to resolve the x and y ?
- Quasiquoting and unquoting allows us to do this!
- (10 30 ,x 5060 ,y)

$\mathcal{L}_{\text {VARIADIC: }}$ Support for variadic-argument functions

- A function that is defined to receive any number of arguments is called variadic.
- Under the hood, we translate these into a list of arguments.
- The function processes these arguments as if they were received a list of values.

First-class \& Higher-order functions

- In our language and other functional programming languages, functions are first-class citizens, meaning they can be passed around as arguments to functions and returned from functions.
- Example:

```
(define compute-bill
    ( }\lambda\mathrm{ (tip-pt)
    (\lambda (tax-pt)
        ( }\lambda\mathrm{ (sub serv)
            (let ([tax-amt
            (+ sub
                        (* sub
                        (/ tip-pt 100)))])
            (+ (+ tax-amt
            (* (/ tax-pt 100)
                tax-amt))
            s(erv))))))
```


$\mathcal{L}_{\text {EVAL }}:$ Evaluation and application

- We have a way of converting code into data via quoting, but what about the other way around?
- Two new forms: eval and apply.
- eval receives a quoted expression, or data, and attempts to evaluate it. E.g., (eval ' $(+23$)) resolves to 5 .
- apply applies a function to a list of arguments. E.g., (apply cons ' 23)) resolves to (2 . 3).

Accumulator-passing style

- Accumulators are values that we construct when a function is in tail-position.
- A function call is in tail position if it is the last action performed before a "return".
- We accumulate the result in a parameter, hence the term "accumulator-passing style".

Continuation-passing style

- A continuation is, in effect, "the rest of a computation".
- We use continuations to direct program control to where we want it to go next.
- E.g., k is the continuation!

```
(define fact-cps
    (\lambda (n k)
    (cond
    [(zero? n) (k 1)]
    [else
        (fact-cps (sub1 n)
        (\lambda (v)
        (k (* n v))))])))
```

- We invoke this by (fact-cps 5 (λ (v) v))

Nested interpreters

- Our language is now powerful enough to where we can write interpreters from within the interpreter! We call this nested interpretation.
- For nested languages, we need to define recognizer functions and reducer functions.
- Recognizer functions determine whether a value represents some structure.
- Reducer functions evaluate the structured data.
- Tons and tons of examples in the book.

Imperative Programming

$\mathcal{L}_{\text {SET }}:$ Assignment statements

- C allows us to reassign variables after their initialization.
- Until now, our language does not let us.
- Doing so raises questions about the purity of our language.

expr	$::=$ application $\mid \ldots$	
application	$::=$ set \mid setfirst \| setrest	..
set	$::=$ 'set! , symbol expr	
setfirst	$::=$ 'set-first! , symbol expr	
setrest	$::=$ 'set-rest! , symbol expr	

$\mathcal{L}_{\text {BEGIN: }}$ Sequential expressions

- Assignment statements, e.g., set!, do not return a value.
- Therefore, we should add a construct that allows us to chain statements and expressions in a sequence.
- How does this help us? Closures are now easier to visualize.

$$
\begin{array}{ll}
\text { expr } & ::=\text { application | .. } \\
\text { application } & ::=\text { begin } \mid \ldots \\
\text { begin } & ::=\text { 'begin ' expr+ }
\end{array}
$$

$\mathcal{L}_{\text {OUT }}:$ Fancier output

- In C we use printf for formatted output. We can output strings, booleans, integers, whatever we wish.

```
expr ::= application | ...
application ::= printf | ...
printf ::= 'printf' expr expr*
```


Parameter-passing styles

- Pass-by-value: pass a copy of each argument to functions.
- Pass-by-reference: pass a memory reference of each argument to functions. Mutating a value in the function modifies the value outside as well.
- Lazy evaluation by name: evaluate arguments only as they are referenced in the body of a function.
- Lazy evaluation by need: evaluate arguments only as they are referenced in the body of a function, but save the result of the expression to avoid recomputation.

$\mathcal{L}_{\text {VECTOR: }}$ Static data structures

- Pairs and lists are dynamic data structures; i.e., they are resizable.
- Vectors are like C arrays; they cannot be resized after their declaration, but provide constant lookup times.

expr application		application	
	::=	vector	
	\|	vector-set	
	\|	vector-get	
	\|		
vector	::=	'make-vector'	expr
vector-set	: $=$	'vector-set!	id expr
vector-get	:: $=$	'vector-get'	id expr

$\mathcal{L}_{\text {LIB }}:$ External libraries

- Libraries, or auxiliary files with function definitions, prevent the need to constantly rewrite functions.
- Requires careful parsing; how do we handle circular dependencies or duplicate function definitions?

```
expr ::= application | ...
application ::= include | ...
include ::= 'include ' string
```


$\mathcal{L}_{\text {BIGNUM: }}$ Arbitrarily-precise numbers

- Using only 64-bit double numbers limits our program capabilities. What if we want to work with arbitrarily large values?
- No new language features aside from reworking our s-value for numbers to use gmp and mpfr.
- To simplify successive discussions, we will not use $\mathcal{L}_{\text {BIGNUM }}$ following this section.

$\mathcal{L}_{\text {IN }}:$ Improved user input

- In C we can use getline and fgets to read strings in from different sources.
- We then parse these using sscanf or some other roughly-equivalent function.
- $\mathcal{L}_{\text {IN }}$ adds read-string and read-number for reading strings and numbers, respectively, from standard input.

$\mathcal{L}_{\text {FILE I/O: }}$: File input and output

- Working with files is a prominent part of programming and software development.
- In C we use FILE and auxiliary functions to read data from files.
- $\mathcal{L}_{\text {FILE I/O }}$ uses the C primitives to add support for reading from and writing to files.

$\mathcal{L}_{\text {Loop: }}$ An iterative approach to problem-solving

- Recursion is a great and powerful concept, but we can very easily overflow the procedure call stack.
- Moreover, some concepts are harder to understand when the only tool at our disposal is recursion.
- $\mathcal{L}_{\text {LOOP }}$ adds a do loop construct, which functions identically to a while loop in C.

$$
\begin{array}{ll}
\text { expr } & ::=\text { application } \mid \ldots \\
\text { application } & ::=\text { do } \mid \ldots \\
\text { do } & ::=\text { 'do 'expr expr }
\end{array}
$$

$\mathcal{L}_{\text {MACRO }}:$ A simple macro system

- Macros are textual substitutions in code.
- We use the preprocessor in C, but we do not have such a thing in our language.
- What do macros give us? Lots of helpful language constructs that are otherwise impossible or cumbersome, e.g., promises.

```
expr ::= application | ...
application ::= macro | ...
macro ::= 'define-macro (' id id* ')' expr
```


Compilation

An assembly primer

- We will write a small compiler for our language.
- Recall that compilers, in general, target machine-dependent assembly language; we will choose $x 86 / 64$ assembly.
- Compilers are much faster than interpreters, hence the desire!
- Assembly is mnemonic-driven; small instructions to do small tasks. We operate primarily on registers: 64-bit slots for values on the CPU.
- movq \%rax, \%rbx moves the data from register \%rax into register \%rbx.

Compiling $\mathcal{L}_{\mathrm{PF} 1}^{-}$to $\mathcal{L}_{\mathrm{PF} 1_{x 64}}^{-}$

- Our first language supports printing only constant integer values.

expr	$::=$	'(call (print' ' , constant '))'
constant	$::=$	$[0-9]+$
pf1-	$::=$	expr*

- After this we expand out to include simple binary operations and expressions.

```
expr ::= '(call (print' ' ' (constant | arithexpr) '))'
arithexpr ::= '(' binop ' ' constant ' ' constant ')'
binop ::= '+' | '-' | '*' | '/'
constant }\quad::=\quad[0-9]
pf1 ::= expr*
```


Compiling $\mathcal{L}_{\mathrm{PF} 2}$ to $\mathcal{L}_{\mathrm{PF} 2_{264}}$

- We want to support variables; let's add those! All variables are allocated on the stack. Inefficient, but simple.

expr	::=	call	
	\|	var	
	\|	arithexpr	
	\|	constant	
	\|	id	
call	$::=$	'(call (print' ' , expr '))'	
var	:	'(var ' id ' = ' expr')'	
arithexpr	: $:=$	'(' binop binopval binopval ')'	
binopval	$::=$	\{call \| constant	id\};
id	: $=$	[a-zA-Z] +	
pf 2	: $=$	expr*	

Compiling $\mathcal{L}_{\mathrm{COND}}^{-}$to $\mathcal{L}_{\mathrm{COND}_{664}}^{-}$

- Before we compile conditionals, we should get boolean expressions to work.

```
expr 
```

- After this we can add an if statement.

```
expr ::= if | ...
if ::= '(if ' expr expr expr ')'
cond ::= expr*
```


Compiling $\mathcal{L}_{\mathrm{COND}}^{+}$to $\mathcal{L}_{\mathrm{COND}_{664}}^{+}$

- Programming languages aren't very powerful without some way to repeat an action.
- Since we do not yet have procedures, we cannot implement recursion.

```
expr ::= while | ...
while ::= '(while ' expr ' ' expr ')'
condplus ::= expr*
```


Compiling $\mathcal{L}_{\text {PROC }}^{-}$to $\mathcal{L}_{\text {PROC }}^{-}$64

- On the journey to functions, we will first implement subroutines: or functions that do not receive nor return values.

```
expr ::= proc|...
proc ::= '(proc ' id ' ' '(' id* ')' lstmt ')'
lstmt ::= expr lstmt | expr
id ::= [a-zA-Z]+
proc- ::= expr*
```


Compiling $\mathcal{L}_{\text {PROC }}$ to $\mathcal{L}_{\text {PROC }}^{664}$

- Subroutines are boring!

expr	$::=$ call \| proc
call	$::=$ '(call , id '(' expr* '))'
procdecl	$::=$ '(proc , id '('id* ')' expr* ')'
proc	$::=$ expr+

Compiling $\mathcal{L}_{\text {PROC }}^{+}$to $\mathcal{L}_{\text {PROC }}^{664}$

- Some functions do not compile correctly in $\mathcal{L}_{\text {PROC }_{x 64}}$. We need to fix them!
- Problem: we delay setting argument registers until after all arguments are evaluated.
- Solution: evaluate the arguments to a function in reverse, push the result to the stack via pushq. Then, once all arguments have been evaluated, pop the results off the stack into the appropriate argument-registers via popq.

Compiling $\mathcal{L}_{\text {ARRAY }}$ to $\mathcal{L}_{\text {ARRAY }_{664}}$

- We need a data structure to make this a truly powerful language! Let's implement stack-allocated arrays.

```
expr ::= getindex | setindex | ...
decl ::= arraydecl | ...
arraydecl ::= '(array ' number ')'
getindex ::= '(get-index ' id ' ' expr ')'
setindex ::= '(set-index ' id ' ' expr ' ' expr ')'
array ::= decl* expr*
```


Compiling $\mathcal{L}_{\text {FLOAT }}$ to $\mathcal{L}_{\text {FLOAT }_{x 64}}$

- We already store integers in registers; can we not do the same for floating-point values?
- Answer: no! Floating-point values are considerably more difficult to tackle.
- We cannot use local variables; everything is declared in the data segment.

| expr | $::=$ arithexpr \| setexpr | callexpr |
| :--- | :--- |
| callexpr | $::=$ '(call id id* ')', |
| proc | $::=$ '(proc main ()' '(' expr+ '))' |
| constant | $::=$ number |
| float | $::=$ vardecl* proc |

Memory Management

Stack-allocated (static) memory

- The stack is a small section of memory for local variable declarations (not using malloc or its derivatives).
- We also use the stack for function calls, i.e., function arguments, return values, and so forth are stored in activation records.
- When a function returns, its activation record is removed from the stack, thereby removing all stack-declared variables.

Heap-allocated (dynamic) memory

- The heap is a collection of blocks that our program can "tap into" when allocating memory at runtime.
- We have seen this with functions, e.g., malloc, calloc, realloc, strdup, and so forth.
- In C, we have to free this memory, otherwise we cause a memory leak.

Garbage collection

- Scheme is particularly tricky to allocate/deallocate memory for, because the lifetime of a function/variable is not always unknown.
- Deallocating at the wrong time will cause an undefined variable reference or crash the interpreter.
- A garbage collector keeps track of "live" heap references and deallocates these chunks when nothing points to them (i.e., they are no longer live).

Garbage collection (cont)

- We write two garbage collectors in the book: a simple one and a reference-counted garbage collector.
- The simple garbage collector simply keeps track of the allocations made and frees them before ending the program.
- Incredibly simple, but not very useful.
- The reference-counted garbage collector counts each pointer to an object in memory; once that number reaches zero for an object, it is no longer reachable and its memory is freed.

Event-Driven Programming

Concurrent programming

- Our programs so far have been loaded in via files. What if we want to run a program and make changes on the fly?
- We can implement a read-evaluate-print-loop.
- Problem: our system has to constantly listen for input and be ready to receive it, so how can the system also evaluate expressions in the interpreter?
- Solution: multithreading!

Threading

- Threads manage separated sequence of actions for the current program to execute.
- Problem: multithreading opens the nasty can of worms that contains data races/race conditions. Race conditions are "competitions" for a piece of data; one thread might write into a value using an old value and another thread can then use an incorrect value.
- Solution: mutexes and condition variables!

Multithreading and garbage collection

- Previous versions of our garbage collectors were "stop the world" garbage collectors, i.e., interpretation stops to wait for the collector to finish.
- Stop the world garbage collectors are slow!
- We can integrate multithreading into the mix and use a separate thread for our reference-counted garbage collector.

