
Metrics-Driven Enterprise
Software Development

Subhajit Datta

Presentation Plan

• The Metrics Odyssey
• Developing Enterprise Software
• A Holistic Role for Metrics
• A Quick Case Study
• Conclusion

The Software Metrics Odyssey
• 1970s – Quest for “laws” of software and

complexity measures
– [McC76], [Hal77], [BL79], …

• 1980s – Towards enterprise-wide metrics culture
– [SHV86], [GC87], [DL87], …

• 1990s – OOAD measures and quality concerns
– [LK94], [CK94], [Whi97], …

• 2000s - Measuring across the spectrum:
product, people, process, project
– [Lan01], [CSE02], [vS04], …

Rigor versus Expediency

Some metrics
are strongly
grounded in
theory [CK94,
Whi97,…]

Others focus
more on practice
[DL87, LK94,…]

Choice of metrics depends on
a project’s needs

Metrics: Thinking Inside the Box
• So far, software

engineering metrics have
addressed size, defect
density etc.

• These are useful as
management “numbers”

• Or, for a posteriori
scrutiny of product or
process

• But metrics can do more
…

Towards a More Holistic View

• Metrics driven development guides
practitioners at every step of the life cycle

• Helping analysis, design, implementation,
testing, and deployment of solutions with
– Greater confidence
– Purpose
– Sensitivity to changing business needs

• Metrics are vital to the success of today’s
enterprise software projects

Enterprise Software Systems

• Support large scale business processes, with
high demands of
– Usability, Reliability, Performance, Supportability

• Subject to continuous change in requirements,
driven by
– New business, competition, technology …

• Other characteristics include [Fow03]
– Concurrent data access, complex business “illogic”,

need to integrate with other enterprise systems

New Frontiers, Newer
Challenges

• Enterprise software is at the cornerstone
of major changes today
– Global development
– Teams distributed across continents
– Open source software
– Cross cultural contact

• Iterative and incremental development
(IID) is widely used to build enterprise
software

The Power of IID …

• The system grows
incrementally, over
iterations

• Users are able to test
and give feedback

• Developers
understand user
needs better

• Managers can fine
tune deliverables
continually

And its Pitfalls

• What is the scope of an iteration?
• How to decide on the granularity of an

increment?
• “Juicy Bits First”?
• Or, big risks at the beginning?
• Will iterations and increments finally

converge into a cohesive system?
• Or, will they just give a potpourri of loosely

slung modules?

Metrics from Within

• Metrics can monitor and regulate
development from within, by helping
– Define, evaluate, and decide in the process

space
– Resolve stakeholder objectives
– Address the continuum of change

• How?
• Let us illustrate by example

A Quick Case Study
• Yet Another Software Company (YUSC) is

building a Web application for Just Another
Client (JAC)
– Usual disclaimers about YUSC and JAC being purely

fictional hold, of course!
• JAC is a large financial company, looking to offer

“new and improved” online services to its
customers
– “Sprucing up” the existing website
– Adding new functionality
– Integrating a suite of legacy applications

Points of Interest

• A project like this has several areas of concern
– Tweaking of existing code
– Design and implementation of new functionality
– Interfacing with legacy applications

• Most importantly, requirements are prone to
continual change
– Stakeholders demand their respective pounds of flesh
– Customers understand their needs only when

developers flesh them out

Two Typical Situations

• Requirements are
oscillating too much

• Unending cycles of
design change

• Every iteration seems
to start afresh

• Increments do not
grow the system

The story of YUSC and JAC …

Doing it the Usual Way
Confer with customers Hope requirements freeze

Try and figure what changedTweak the system

Over and over again,
as deadline looms

Doing it the Metrics Way

• Is there a better way?
• Let us see how two simple and intuitive,

tailor-made metrics can help us
– Morphing Index
– Specific Convergence

Morphing Index

∑

∑

=

== n

j
j

m

i
i

Mw

Cw
kRI

1

1

)(

)(
)(

• How components
collaborate via messages
at some iteration k

• w(Ci) = weight of the i’th
component, based on
whether it is primary,
secondary, or tertiary

• w(Mj) = weight of the j’th
message, based on
whether it is creational,
computational, or
transmissional

Comparing the Morphing Index
values across iterations help
quantify the changes in design

Specific Convergence

∑

∑

=

== n

j
jj

m

i
ii

DUEFDURF

DUEFDURF
kSC

1

1

)(*)(

)(*)(
)(

• How activities in an
iteration k contribute
towards the final
deliverable

• DUi = i’th Deliverable
Unit

• RF(DUi) = Risk Factor
associated with DUi

• EF(DUi) = Effort
Factor associated
with DUi

The Specific Convergence
value for each iteration
indicates how close the
development effort is getting to
convergence

The Metrics Message

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4

k RI(k)
1 0.23
2 0.45
3 0.39
4 0.71

Variation of design across iterations; the curve should
flatten as the project progresses

SC(1) SC(2) SC(3) SC(4)
Plan A 0.48 0.84 0.97 1
Plan B 0.02 0.16 0.52 1

0

0.2

0.4

0.6

0.8

1

1 2 3 4

In choice of iteration plans,
Plan A tackles higher risk
and higher effort first, Plan B
keeps them for later

Net Value Add

• Simple, intuitive metrics like the Morphing Index
and Specific Convergence help practitioners
– Moderate the development process at the micro level
– Manage customer expectations better
– Evaluate changes and their effects
– Decide on the most expedient course of action

• Without metrics, all of these are
– Ad-hoc
– Instinct driven
– Often, unreasonable

Making Your Own Metrics
• How do you get good

metrics, or metrics that
are good for you?

• You can try out different
metrics, and see how
work, or do not work

• Or, you can make your
own metrics

• Metrics making is the
surest test of your grasp
on a scenario

Metrics: N Commandments …

• No silver bullet
• Metrics hunt in groups
• There are always

assumptions
• Customize a metric

when necessary
• Be ready to build your

own metrics

• Keep it simple
• Collect and compile

over time
• Use automation
• Be clear about scope

and workings
• Metrics give feedback

– the rest is yours

Conclusion
• A metrics culture is essential for the latest

challenges of enterprise software development
• Metrics driven development help practitioners

analyze, design, implement, test, and deploy
faster and better solutions

• Simple, intuitive metrics can greatly help
monitoring and decision making within the
development process

• With experience and innovation, practitioners
can build and apply their own metrics

References …
• [McC76] T.J. McCabe. A software complexity measure. In IEEE Trans.

Software Engineering, vol. SE-2, December 1976, pages 308–320,
1976.

• [Hal77] Maurice H. Halstead. Elements of Software Science. Elsevier
North-Holland, Inc.,1977.

• [BL79] L. A. Belady and M. M. Lehman. The characteristics of large
systems, 1979. In Research Directions in Software Technology, Page
106-138, MIT Press.

• [SHV86] S.D.Conte, H.E.Dunsmore, and V.Y.Shen. Software
Engineering Metrics and Models. The Benjamin/Cummins Publishing
Company, Inc, 1986.

• [GC87] Robert B. Grady and Deborah L. Caswell. Software metrics :
establishing a company-wide program. Prentice Hall, 1987.

• [DL87] Tom DeMarco and Timothy Lister. Peopleware : productive
projects and teams. Dorset House Pub. Co., 1987.

• [LK94] Mark Lorenz and Jeff Kidd. Object-oriented software metrics : a
practical guide. PTR Prentice Hall, 1994.

References contd. & Thank
You!

• [CK94] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng., 20(6):476–493,
1994.

• [Whi97] Scott A. Whitmire. Object-oriented design measurement.
Wiley Computer Pub, 1997.

• [Lan01] Michele Lanza. The evolution matrix: recovering software
evolution using software visualization techniques. In IWPSE ’01:
Proceedings of the 4th International Workshop on Principles of
Software Evolution, pages 37–42, New York, NY, USA, 2001.

• [CSE02] CSE-Center for Software-Engineering. Cocomo.
http://sunset.usc.edu/research/COCOMOII/, 2002.

• [vS04] Rini van Solingen. Measuring the ROI of software
process improvement. IEEE Softw., 21(4):32–34, 2004.

• [Fow03] Martin Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2003.

Thank you! Questions, comments, feedback?

	Metrics-Driven Enterprise Software Development��
	Presentation Plan
	The Software Metrics Odyssey
	Rigor versus Expediency
	Metrics: Thinking Inside the Box
	Towards a More Holistic View
	Enterprise Software Systems
	New Frontiers, Newer Challenges
	The Power of IID …
	And its Pitfalls
	Metrics from Within
	A Quick Case Study
	Points of Interest
	Two Typical Situations
	Doing it the Usual Way
	Doing it the Metrics Way
	Morphing Index
	Specific Convergence
	The Metrics Message
	Net Value Add
	Making Your Own Metrics
	Metrics: N Commandments …
	Conclusion
	References …
	References contd. & Thank You!

