Section 4 > Network Modeling

Network Modeling

Nodes and Links in a Shipper's Network

(S = supplier, W = warehouse, P = plant, M = market)

What should we be thinking about ?

Flow > Asset > Transportation

Expedited Group Discussion

Network Modeling

1. Where do we start?

Logistics Waste						
Inventory	Transportation	Time	Space K	nowledge, Admin, Pkg.		
Excess Inventory	Unit Cost	Order to Supplier Ship	# Stocking Locations	Process Complexity		
Safety Stock	Tone/Mile	Ship to Plant Receive	Packaging	Variation Complexity		
Obsolete Inventory	Expedites	Plant Receive to Consumption	Storage Systems	Correction		
Lean Best Practice	Lean Best Practice	Lean Best Practice	Lean Best Practice	Lean Best Practice		
PFEP	Network Ownership	Value Stream Map	Reduced Stocking Points	s Quality at Source		
5S - Visual Control	Network Integration	Sleep Time Reduction	Returnable Containers	Error Proofing		
Pull -Leveled Flow	Logistics Design	Process Improvement	Flow Racks	Standardization		

Capability > Visibility > Understandability

Understanding the Logistics Network					
Channel Partners	Moments of Truth				
What role do channel partners play?	What are the critical touch points with channel partners?				
Continuous	Measurement				
Improvement					
	How do we know if we				
How do we know we are improving?	are succeeding or not?				
Understanding the logistics network starts with understanding all the stakeholders and determining what role they play.					

Flow > Asset > Inventory > Network Modeling

Flow > Asset > Fixed Resources

Logistics Fixed Resources - Prioritization of Waste Elimination					
Priority for Elimination	Fix Resources- Interrogation Questions				
Priority # 1: Warehouses and Space Priority # 2: Transportation Equipment Priority # 3: Material Handling Equipment Priority # 4: Racking - Storage Equipment	1.What is this resource costing us?2.Why do we need this resource?3. How could we operate if we were forced to do without this resource?				

When dealing with fixed resources we must first identify the resource and seriously question the need and value of the resource. Although, we may not eliminate the resource immediately, brainstorming how we would operate without the resource is a very worthwhile exercise.

All Roads Lead to the PFEP

Part Description	Supplier Information	Container Information	Trans. Conv.	
Part # Part Description Common Part Name Daily Volume Minimum Order Quantity Fixed Order Quantity (if exists) Standard Cost per Part	Planner Order Type Order Frequency(week) Supplier Name Supplier Location Supplier Address Shipping Contact Shipping Telephone Shipping Hours	Container Type Length (IN) Width (IN) Weight Per Part (LBS) Weight Per Part (LBS) Full Container Weight (LBS) Parts per Container Parts per Container Containers per Layer Layers per Pallet Layers per Pallet Shrink Rap Shrink Rap Shrink Map	Delivery Frequency Inbound Route Inbound Mode Direct / Cross Dock	Internal Stores Address Flow Rack Internal Route # Internal Route Mode

PFEP (Plan For Every Part) – Packaging File

- 1. How can we get this built?
- 2. How can we ensure it stays accurate?

Lean Logistics Concept 1 of 3 - Lot Size

Plant Daily Requirements = x75

What Happens Here ? What are the Implementation Challenges ?

Lean Logistics Concept 2 of 3 - Frequency

What is the Effect on Inventory? What is the obvious challenge?

Lean Logistics Concept 3 of 3 – Level Flow

Where can we use this concept tomorrow?

Transportation Strategies

- 1. What is our objective with Transportation ?
- 2. What are the decisions to be made?
- 3. How can we reach our lean goals ?

Remember: There is no magic pill to transportation challenges. What are your goals ?

Question: What is a milk run?

Warehousing Strategies

- 1. Why do we have warehouses ?
- 2. What are the decisions to be made?
- 3. How can we reach our lean goals ?

Remember: There is no magic pill to warehousing challenges. What are your goals ?

Question: What is a cross dock ?

Flow > Asset > Transportation

Flow > Asset > Cross Dock

Work Out

Logistics Network Modeling

- 1. How can we stratify inventory?
- 2. What inventory characteristics are we looking for to implement lean first?
- 3. When would milk runs make sense?
- 4. When would cross docking make sense?

Section 5 > The Lean 6σ Logistics Strategy

Key Strategic Drivers

Stability

Capability > Predictability > Organization

The Organized Workplace										
Box A What Number is Missing ?										
2	5		12		23	1	15	25		
3	9		18		24	8	7	22		
4		13		17	14	6	10	20		
21		1	1			16				

Adapted From Achieving Basic Stability - LEI

Capability > Predictability > Organization

Adapted From Achieving Basic Stability - LEI

Capability > Predictability > Complexity

Complexity and Cumulative Probabilities

The more steps, or complexity in any process, the more opportunities for defects. Consider if the "perfect order" components were all running at 99% performance levels. What would be the yield performance of the entire process to the customer ?

Perfect Order	Performance
Right Part	99%
Right Place	99%
Right Time	99%
Right Quantity	99%
Right Quality	99%
Right Cost	99%
Overall Logistics Performa	ince = 94%

Capability > Stability > Flexibility

Flexibility + Visibility = Waste Reduction

Visibility and operational flexibility are a powerful combination. We need to see the opportunities and then we need to do something about them !

Capability > Stability > Control

Capability > Stability > Control

Questions for Out of Control Processes

Processes will not go out of control randomly. Some event has happened that resulted in the process going out of control. If a process seems to be out of control, ask yourself:

- 1. Have we changed the way we measure this process ?
- 2. Has there been an environmental change (weather, supplier location)?
- 3. Have we changed the people that manage this process ?
- 4. Has there been a change in the procedures of the process ?
- 5. Have we changed suppliers to the process ?

Discipline

Discipline > Collaboration > Strategic Sourcing

This shows us that we are better off remaining in transactional relationships if we are not ready to develop relationships properly. This is especially true with third party logistics.

Discipline > Waste Elimination > Quality at the Source

Error vs. Customer Defect
Error
Definition: A mistake made that could result in a defect to product or process.
Example: Wrong customer address on shipping documents
Probability of errors happening: 100%
Defect
Definition: A defect in process or procedure as defined by the customer (internal or external)
Example: Shipment delivering to wrong customer address
Probability of opportunity for defects occurring : 100%
An error is very different from a defect. Errors will most certainly happen, however they do not need to turn into customer defects.

Discipline > Waste Elimination > Continuous Improvement

Work Out – Strategy Development

Lean 6o Logistics Strategy Development

- 1. Voice of the customer
- 2. What is your supply chain vision?
- 3. Choose 2 key logistics points that are clearly challenges.
- 4. What is the current condition?
- 5. What steps will you take to bridge the operational gap?

Lean 6σ Logistics > Maturity Level

The Doom Loop	The Next Step	Maturity	
Characteristics	Characteristics	Characteristics	
Accept Unleveled Demand	Understand Unleveled Demand	Level Demand	
Accept Complexity in Ordering	Create Logistics Visibility of Orders	Common Ordering System	
Accept Supplier Non - Conformance	Measure Supplier Performance	Supplier Partnerships (OPS)	
No Logistics Network Design	Focused Logistics Design	Integrated Logistics Design	
Complexity of Processes	Management of Complexity	Elimination of Complexity	
High Inventory Levels	Focused PFEP	Total PFEP	
Lack of Logistics Knowledge	Supplier-Internal Training	Learning Organization	
Stratogios	Stratogios	Stratogios	
	Strategies	Strategies	
Buy Technology	Fully Understand Current Condition	Hoshin Planning	
Change Suppliers	Isolate Lean Part Candidates	Leveled Demand	
Re-work Transportation Network	Roll Out Measurable Pilot Program	Pull Replenishment	
Focus on Hard Dollar Savings	Train and Develop Select Groups	Fully Trained Personnel	

Key Discussion Points

- 1. Logistics is a service = people and process.
- 2. Total Logistics Cost is a dynamic system, which makes measurement of real savings extremely difficult.
- 3. Inventory drives all logistics costs and processes. It must be our primary focus.

Logistics Bridge Model

