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Preface

The Architectural Acoustics Handbook attempts to summarize the present state of knowledge
evolved from both the research and consulting communities in this important field. To this
end, the handbook contains two Parts; Part I: Architectural Acoustics Essentials and Part II:
Architectural Acoustics Practice—contributed by authorities in various subfields, though it
is not always possible to establish a clean division between the two. It is meant to serve as a
handy reference and a useful resource for research scientists, undergraduate and graduate
students studying architectural acoustics, and for acoustic consultants and engineers who are
professionally engaged in architectural acoustics practice.

As such, this volume aims to provide for audiences who are interested and engaged in
frontier research with the latest progress and findings in vibrant research fields that were
otherwise treated largely in specific acoustical journals. The topics and subfields covered
include geometrical and wave-based room-acoustic modeling methods (Chapters 1 and 2),
acoustics in long and coupled spaces (Chapters 3 and 4), measurement methods for archi-
tectural acoustics (Chapter 5), advanced room-acoustic energy decay analysis (Chapter 6),
sound insulation in buildings (Chapter 7), auditory perception and auralization in rooms
(Chapters 8 and 9), room-related sound representations using loudspeakers (Chapter 10)
and environmental acoustics around the built environment (Chapter 11). To also serve archi-
tectural acoustics design practice, Part II of this volume provides guidance for the practical
design of sound systems (Chapter 12), and heating, ventilating, and air conditioning systems
in buildings (Chapter 13), as well as the acoustical design and renovations of various types of
venues, including worship spaces (Chapter 14), and music performance halls, dramatic arts,
and music instruction spaces (Chapter 15). To keep the book to an appropriate size, the au-
thors were given a page limit. Most of the chapters in Part I were kept within this limit, while
some chapters covering design practice in Part IT were allotted more pages.

Recognizing that no single individual possesses all the expert knowledge on such a diverse
field as architectural acoustics, the editor of this book wishes to extend his sincere apprecia-
tion to all the chapter authors, who alongside their professional work load, have dedicated
themselves to the laborious task of presenting their respective fields of expertise in an exten-
sive, yet compact form. We are particularly indebted to Tim Pletscher and Stephen Buda at J.
Ross Publishing for their effective help and guidance in the production of this book.

Needless to say, this effort spans many years. Two esteemed chapter authors—who were
delightful colleagues and highly respected acoustical consultants—passed before seeing this
work published. Ronald McKay, right after delivering his chapter on Music Performance
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Spaces, passed in December 2011." Ewart (Red) Wetherill, who submitted his entirely com-
pleted chapter on Acoustics in Worship Spaces on September 1, 2013, after two rounds of
thorough revisions, passed in November 2015. This book is dedicated to the memory of our
esteemed colleagues, Ronald L. McKay (1932-2011) and Ewart A. Wetherill (1928-2015).

Ning Xiang, Troy, July 2016

'After his passing, a number of partially completed illustrations were finished with the help
of Yigiao Hou.
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1.1 ROOM ACOUSTIC MODELING

Room acoustics offer challenging problems for computational and numerical modeling. The
geometry of the problem can be very large relative to wavelengths that span many orders of
magnitude. At the same time, requirements for precision and accuracy might be high if the
computed results are to be used for auralization or other evaluation of perceived quality.

The result is a situation where both more physically accurate wave-based methods and
faster, but more approximate, geometrical methods might be necessary to cover the wide
frequency range of interest with adequate accuracy. Physically motivated wave-based meth-
ods like the boundary element method (BEM), the finite element method (FEM), the finite
difference method (FDM), and many other related variants are both computationally feasible
and relevant at low frequencies or in small geometries. Analytical solutions are also available
for simplified room geometries, for rooms composed of simple subdomains, and to augment
partial solutions from other numerical methods.

The limited resolution of our hearing makes modeling fine details at higher frequencies
less important, which also implies that these accurate but computationally costly methods
might give unnecessarily precise results at high frequencies. (Note: they are potentially precise
but the input data is not available with the required precision.) Other chapters demonstrate
that different computational methods have been developed for different problems and sce-
narios,”? and the importance of auralization® and the auditory system must also be kept in
mind. This chapter outlines the methods that are relevant and well-suited to modeling physi-
cal wave mechanics for low frequencies and small geometries, where effects of wave physics
are important in order to get accurate results.




2 Architectural Acoustics Handbook

1.2 ANALYTICAL SOLUTIONS

Explicit analytical solutions to the wave equation without medium losses are available for
a few geometries and types of boundary conditions, and in room acoustics where the ca-
nonical room shape is parallelepiped, as illustrated in Figure 1.1. Other potentially useful
geometries often correspond to common, orthogonal coordinate systems, like the cylinder
(including wedges) and the sphere (including hemispheres). These are not presented here but
are available.* Section 2.3 also demonstrates how simplified geometries might be combined
to represent more general structures. The differential equation governing linear acoustics is
the second-order wave equation:

2 X,

Vzp(x,t)—ciz%:qs(x,t), (L)
where c is the speed of sound, and p(x, t) is the sound pressure field. The quantity g,(x,t) on
the right-hand side is a source term, which might, e.g., be a Dirac function of space to indi-
cate a point source. If we consider single-frequency sources, that is, sources with a time de-
pendence of the form, g(x,t)=gq,(x)e’”, then the partial differential equation (1.1) reduces
to the Helmholtz equation:

V()42 p=a(x), 12

where the function p(x) and the source function g,(x) will depend on (angular) frequency
w. If the geometry is one of the few canonical shapes,’ separation of variables can be applied,
and explicit solutions can be written as a classical modal summation. Furthermore, if the
study is restricted to point sources (located in x,), then the solution can be written in the
general form:

Jonpo mm,( $) D, (%)
p(x)= Y A, P (1.3)

m,n,q€[0,00]
where the summation is over all combinations of integer values m, 1, g; ®(x) are the so-called
mode functions which depend on geometry and boundary conditions (BC); U, is the volume
velocity amplitude of the point source in X3 p, is the density of air; V is the room volume;

Figure 1.1 The parallelepipedic room for which an analytical solution is available
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. are the so-called eigenvalues; and A, is a mode number normalization factor: 2 if two
of m, n, g are zero, 4 if one of m, n, g is zero, and 8 if none of m, n, q is zero. If U, = 1, then this
solution corresponds to a transfer function in space—a Green’s function—and the solution
for an extended source in space can be produced by convolving the Green’s function from
Eq. (1.3) with the source distribution function g,(x).” The harmonic time-dependence, ¢/,
is left out here and in all subsequent constant-frequency expressions. It could be noted that
this solution corresponds to an ideal, lossless situation, which would reach infinite amplitude
if the source frequency was chosen as one of the eigenvalues w . The common solution to
model small amounts of losses which are evenly distributed across the walls, is to introduce
complex eigenvalues:

@mnq = wmnq + jsmnq 4 (14)

where the underline indicates a complex value, and §, is a loss factor, which is related to the
reverberation time T, via §=3In10/T,,.

By assuming a distributed loss, the mode functions, ®(x), will be very similar to those for
a lossless case. This assumption requires that losses are small, that is §,, <<, , which is
usually fulfilled in room acoustical cases. This small-loss assumption leads to the modal sum
with losses:¢

ijOpoCz q)mnq (XS )q)mnq (X)
= A . 1.5
p(X) 14 rr%q " wz - wrznnq - j26mnqwmnq ( )

If the eigenfunctions and eigenvalues can be computed for the geometry and boundary con-
ditions at hand, this spectral solution can be used to compute the sound pressure amplitude
for a given source frequency w.

The expression in Eq. (1.5) involves an infinite summation over three indices. At low fre-
quencies, where the modal density is low, a single term might dominate the sum, particularly
near the eigenvalues w__ . Above the so-called Schréder frequency, fsm, however, the modal
density is so high that there are large numbers of terms of similar amplitudes at any given
source frequency w. The value of this important frequency is:”

/T
=2000, =%, 1.6
fSch. \% ( )

where the numerical constant obviously has the unit (m/s)*% Also below the Schroder fre-
quency, for frequencies between eigenvalues, a large number of terms might have significant
amplitudes and consequently, the sum might converge very slowly. The amplitude of higher-
order terms falls offas 1/ @}, but the number of higher-order terms is large thanks to the triple
summation. A numerical example in Section 3.1 illustrates this effect. One demonstration of
the slow convergence is the case when the receiver position is placed exactly at the position
of the point source. This case is expected to give an infinite amplitude as a result, since the
free-field (direct sound) singularity at the point source location should become imminent.
But, the form in Eq. (1.5) does not seem to indicate that x = x leads to any singularity. The
explanation is that when x = x;, then @ (x)®,, (x) is always positive and consequently,
the summation will diverge—for other cases, that mode function product will have alternat-
ing signs, rendering the sum convergent, albeit slowly.

Time-domain expressions, that is, impulse responses, can be found via an inverse Fourier
transform of the result of Eq. (1.5), or via explicit time-domain modal summation forms.®



4 Architectural Acoustics Handbook

1.2.1 Parallelepipedic (Shoebox) Room

As previously stated, a small number of canonical shapes are analytically solvable by separa-
tion of variables. In practice, many rooms and buildings are essentially rectilinear in shape, so
the parallelepipedic shoebox room is an important representative example in room acoustics.
The most important boundary condition (BC) to study is the Neumann BC, formulated as:

5P
i =0=v =0, 1.7
on ! ( )

at surface

which corresponds to a perfectly rigid wall with an absorption coefficient of zero. More real-
istic cases are discussed below, but as mentioned above, a common technique for introducing
(small) losses is to maintain a lossless BC, while introducing a modal loss factor §, . For the
parallelepipedical room in Figure 1.1, with a Neumann BC on all six walls, the modal func-
tion set (the so-called eigenfunctions) has the form:*

cosnlﬂcosﬂ, (1.8)

L.

mnq

@, (x)=cos mrx
l y

to be used in Egs. (1.3) and (1.5). The modal resonance frequencies (the so-called eigenfre-

quencies) are given by:
2 2 2
m n q
=me | — |+ |+ |, .
wm"‘i ﬂc\/( lx ) (l)’ J (IZ ] (1 9)

where [,] and|_are the side lengths of the room as indicated in Figure 1.1.

1.2.2 Modal Solution + Propagating Waves

The 3-D eigenfunction form given in the previous section, for the case of a Neumann BC
on all surfaces, might be practical to write in a form with propagating waves in one of the
dimensions. As one example, we might have a locally reacting material described by an im-
pedance Z_ on asingle wall, e.g.,at y = ly, or a source distribution in the form of a vibrating
wall at y = 0. Then the solution could be written:

D » ,
p(x, y,z)=zw2 _w;”“f’;]za) " [Ame Hyy +anef"ﬂ], (1.10)
k _ kz wrzrm w —£ ﬂ 2_1,_ E 2 (1 11)
N e 2L 1)’ :

and the coefficients A, B_are derived to fulfill the boundary conditions aty = / and at the
source. Using this form, a number of cases can be handled, e.g., a source distribution in the
wall of y = 0, as illustrated in Figure 1.2 can be studied, where the shaded area of the wall at y
=0 is vibrating as a piston. The boundary condition to fulfill at y = 0 is then:

(x,0,2) Z @ ( (1.12)

where the mode amplitudes V are found by expandmg the source distribution function in
the modal functions:

Vo = jj V. (x’O’z)(I)mn (X,Z)dxdz, (113)

mn
[0, 1[0,L;]
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Figure 1.2 Example with a section of a wall as a vibrating surface (shaded area)

mrx cosnlﬂ. (1.14)

x z

@, (x,z)=cos

1.2.3 Domain Matching

Many complex geometries can be constructed of simpler, connected subdomains, for which
we have individual analytical solutions. This can be as illustrated in Figure 1.3 where two
parallelepipedic domains are connected.

The formulation in Subsection 2.2, with propagating waves in one of the three dimen-
sions, can then be used to give us one description in each subdomain:

q)rfm (x’y) —jklz jk!z
pl(x’y’Z)zg;wz—(wfm)z—2j5jma)r’m [A,I,me Y :|, ze[0,L ], (1.15)

o (x,y) ks iz
p”(x>y»Z):§w2_(w,,)z_zjsgwg [Ale ™ 4Bl ], ze[L,L,]. (L16)

s

II

—H— —H—

Figure 1.3 An example geometry which can be described as one rectangular domain connected to another
rectangular domain
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Across the interface between the two domains, the sound pressure and its gradient must be
continuous, and on parts of the interface surface, a Neumann BC might apply. The fulfill-
ment of such matching on the interface leads to a set of equations.

To solve for the unknowns, A;’ Bé, Aé’, B;’, one must decide on a maximum number of
modes that will be taken into account,n_ ,m_ ,r_ ,s_ . That choice specifies the number
of unknowns and one consequently has to distribute at least that many surface sample points
in which the equality should be fulfilled. Finally, a direct inversion or a solution of the over-
determined equation system via regularization must be employed.

A special case of domain matching is a decomposition of the domain under study into par-
allelepipedical blocks.” Yet another example of this approach is used in the study of ducts.*
An analogous approach has also been used with discrete, spectral approximations of the
solution in the subdomains instead of analytical solutions.'" '

1.3 NUMERICAL SOLUTIONS

Frequently in room acoustics modeling, the geometry and boundary conditions render an
analytical solution intractable, and numerical methods must be used to generate an approxi-
mate solution. Common numerical methods in room acoustics include FEMs, BEMs, and
FDMs. Each can be adapted to produce solutions to the stationary problem in the frequency
domain or the transient problem in the time-domain. Each method relies on discretization of
the operator or solution to make the problem manageable. We present only a brief overview
of each method with references to the truly massive body of literature on the subject.

1.3.1 Finite Difference Methods

Historically, the first methods used to generate approximate solutions to partial differen-
tial equations (PDEs) were FDMs.'* The first applications of these methods to 3-D acoustic
simulation in rooms date back to 1994.'* !> These early approaches have distinct origins; one
grew out of methods developed for electromagnetic propagation,' !¢ and the other comes
from the approximation of wave propagation by a delay network'” or by a transmission-line
matrix.'® All of these approaches and their variants, including the earliest ones," are related,
but the problem is perhaps most generally posed as a numerical solution to Eq. (1.1).

FDMs are the simplest and most accessible method described in this section, so we pro-
vide a minimal example. Typically, the problem is evaluated on a regular discrete grid in
space and time, and the approximate form of the three-dimensional wave equation on the
grid is given by:

n+l

Dijx= 2 (pin+l,j,k + px‘w—l,j,k + P:m,k + piyfj—l,k + pirij,k+1 + pirfj,k—l ) (1.17)
+ 201=3A%)p] = Pl

Superscripts indicate temporal indices, and subscripts indicate spatial indices of grid nodes.

The grid is defined by spatial and temporal steps, Ax, At, respectively. The time step should

be chosen by fixing the spatial step so that it resolves all wavelengths of interest and setting

the constant, 1> @ c’At*/Ax* <1/3, where cis the speed of sound. The Courant factor, A, gov-

erns stability and the speed of numerical wave propagation.'® Using the updated Eq. (1.17), if
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the pressure is known everywhere on the grid at times # and n — 1, the pressure at time # +
1 may be computed from its nearest-neighbor pressure values (six for a 3-D model, four for
a 2-D model). In higher-order'* or interpolated schemes,*"** larger numbers of neighbor
values will be involved, resulting in more accurate approximations at slightly higher compu-
tational cost. Spectral methods (Section 3.3) are in some sense a limiting case, using all field
values to compute the derivatives.

Figure 1.4 shows how the values used in the updated equation appear on a typical grid.
It is only shown in two dimensions for visual clarity. The open circle is the unknown value
being computed or updated. One advantage of the FDM, illustrated in the figure, is sparsity
or a locally dependent update.

Although it is relatively old, this simple update continues to be a useful tool for numeri-
cal simulation. The properties of this and its more sophisticated variants can be found, for
example, in References 19 and 21-24. The practical applicability of finite-difference time-
domain (FDTD) techniques is limited by high computational costs at higher frequencies
such that doubling the frequency band induced 8-fold memory consumption and 16-fold
computational load. In addition, the valid frequency band is limited by inherent dispersion.
The actual valid band is different for each scheme, but for the basic scheme of Eq. (1.17), it
gives results that are reliable up to approximately one fifth of the sampling frequency.

The previous description is derived for the scalar wave equation, whereas another popular
approach solves the coupled first-order equations for pressure and particle velocity. To do so,
pressure and three components of velocity are staggered in both space and time to maintain
explicit time-stepping. This approach originates from the electro-magnetics literature and
is often referred to as the Yee algorithm.'> > However, in linear acoustics this approach is
equivalent to the scalar formulation but imposes heavier computational load and memory
requirements.

The overall advantage of FDMs, over others like the FEM or BEM, is realized on regular
grids when the update may be applied uniformly across the domain. This also makes FDMs
extremely well suited to parallelization.*>*

ATt = (n+1)At
t =nAt

At © L] L
t=(n—-1)At

i—1 1+1

Figure 1.4 Graphical depiction of a local, explicit, two-dimensional finite difference update for the discrete
wave equation
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1.3.2 Finite Element and Boundary Element Methods

FEMs are also based on a volume discretization of the room, but instead of discretizing the
operator, the FEM uses a discrete basis set for representing the solution, often piecewise lin-
ear or piecewise polynomial. One of its distinctions from the FDM is that the mesh is often
unstructured, which can increase the geometrical accuracy of the model. For this reason, the
FEM is very popular for solving structural and vibrational problems with highly irregular ge-
ometries. It is similarly useful for acoustic problems with complex geometries, and it is most
often applied to the Helmholtz equation, i.e., Eq. (1.2).?*?° The result in the time-harmonic
case is a piecewise linear or piecewise polynomial approximation to the eigenfunctions of Eq.
(1.3); however, time-domain FEM solutions are also possible.*

BEMs typically approximate solutions to the Helmholtz-Kirchoff integral, which involves
the pressure gradient on the boundary and the Green’s function. Discretizing boundary sur-
faces leads to matrices of Green’s functions that relate a source to boundary elements. The
matrix only scales with surface area instead of volume, so it may be smaller than a finite
difference or a finite element matrix for the same problem. However, the matrix is dense in
contrast with the sparse matrices of the FEM and FDM, so even with fewer elements, it may
be more expensive. One approach that is applicable in some cases is to use fast multipole
methods, which can exploit the regularity of dense BEM matrices.’*

1.3.3 Spectral Methods

Spectral methods, whether associated with discretized solutions or operators, are character-
ized by exponential convergence rates.* FDMs and FEMs converge at polynomial rates, but
methods using suitable spectral differentiation and spectral elements can converge much
faster. As with higher-order or interpolated difference methods, greater accuracy allows
coarser discretization, which then leads to less computation. The trade-off essentially re-
duces to smaller, but denser matrix operators.

The advantage of spectral methods is achieved by expanding the solution or operator into
an orthogonal basis, such as a trigonometric series or the Chebyshev polynomials, and the
approximation is done in this spectral domain. Using Fourier or Chebyshev bases, spectral
methods have been adapted to irregular geometries through coordinate transformations and
domain matching,”'"'* analogous to Section 2.3. Especially when problems are limited by
memory storage, spectral methods are potentially a good alternative to finite difference or
finite element methods. However, the problems for which they are applicable typically coin-
cide with domains where an analytical solution is available.

REFERENCES

1. J. Kang, “Acoustics in Long Rooms,” in Architectural Acoustics Handbook, N. Xiang, Ed. J. Ross
Publishing, 2017.

2. U.P. Svensson, S. Siltanen, L. Savioja, and N. Xiang, “Computational Modeling of Room Acoustics
II: Geometrical Acoustics,” in Architectural Acoustics Handbook, N. Xiang, Ed. ASA Press, 2013.

3. M. Vorlinder, Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms, and
Acoustic Virtual Reality. Berlin: Springer-Verlag, 2007.

4. E. G. Williams, Fourier Acoustics. London, UK: Academic Press, 1999.




Computational Modeling of Room Acoustics I: Wave-Based Modeling 9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

P. M. Morse and H. Feschbach, Methods of Theoretical Physics. Part I. New York: McGraw-Hill,
1953.

. H. Kuttruff, Room Acoustics, 4th ed. London, UK: Spon Press, 2000.
. M. R. Schroeder and K. H. Kuttruff, “On frequency response curves in rooms. comparison of

experimental, theoretical, and monte carlo results for the average frequency spacing between
maxima,” J. Acoust. Soc. Am., vol. 34, no. 1, pp. 76-80, 1962.

. M. M. Boone, “Modal superposition in the time domain: Theory and experimental results,” J.

Acoust. Soc. Am., vol. 97, no. 1, p. 92, 1995.

. N. Raghuvanshi, B. Lloyd, N. Govindaraju, and M. Lin, “Efficient numerical acoustic simulation

on graphics processors using adaptive rectangular decomposition,” In Proc. EAA Symp. Auraliza-
tion, Espoo, Finland, 2009.

R. J. Alfredson, “The propagation of sound in a circular duct of continuously varying cross-sec-
tional area,” J. Sound Vib., vol. 23, no. 4, pp. 433-442, 1972.

J. S. Hesthaven, “A stable penalty method for the compressible Navier-Stokes equations: ITI. multi-
dimensional domain decomposition schemes,” SIAM Journal on Scientific Computing, vol. 20, no.
1, pp. 62-93, 1998.

Y. Q. Zeng, Q. H. Liu, and G. Zhao, “Multidomain pseudospectral time-domain (PSTD) method
for acoustic waves in lossy media,” Journal of Computational Acoustics, vol. 12, no. 03, pp. 277-299,
2004.

R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical
physics,” IBM Journal of Research and Development, vol. 11, no. 2, pp. 215-234, 1967.

D. Botteldooren, “Acoustical finite-difference time-domain simulation in a quasi-cartesian grid,” J.
Acoust. Soc. Am., vol. 95, no. 5, pp. 2313-2319, 1994.

L. Savioja, T. Rinne, and T. Takala, “Simulation of room acoustics with a 3-D finite difference
mesh,” in Proc. Int. Computer Music Conf., 1994, pp. 463-466.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media,” IEEE Trans. Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.

J. O. Smith, “Physical modeling using digital waveguides,” Computer Music J., vol. 16, no. 4, pp.
74-87,1992.

Y. Kagawa, T. Tsuchiya, B. Fujii, and K. Fujioka, “Discrete Huygens’ model approach to sound wave
propagation,” J. Sound Vib., vol. 218, no. 3, pp. 419-444, 1998.

B. Gustafsson, High order difference methods for time dependent PDE, Springer Series in Computa-
tional Mathematics, vol. 38. Springer Verlag, 2008.

S. Sakamoto, H. Nagatomo, A. Ushiyama, and H. Tachibana, “Calculation of impulse responses
and acoustic parameters in a hall by the finite-difference time-domain method,” Acoust. Sci. &
Tech., vol. 29, no. 4, pp. 256-265, 2008.

L. Savioja and V. Vilimaki, “Interpolated rectangular 3-D digital waveguide mesh algorithms with
frequency warping,” IEEE Trans. on Speech and Audio Processing, vol. 11, no. 6, pp. 783-790, 2003.
K. Kowalczyk and M. van Walstijn, “Room acoustics simulation using 3-D compact explicit FDTD
schemes,” IEEE Trans. Audio, Speech, Language Process., vol. 19, no. 1, pp. 34-46, 2011.

J. Strikwerda, Finite Difference Schemes and Partial Differential Equations. New York, NY: Chap-
man & Hall, 1989.

L. N. Trefethen, Spectral methods in MATLAB, vol. 10. Philadelpia: Soc. Indust. Appl. Math., 2000.
P. H. Aoyagi and R. Mittra, “A hybrid Yee algorithm/scalar-wave equation approach,” IEEE Trans.
Microwave Theory and Techniques, vol. 41, no. 9, pp. 1593-1600, 1993.

L. Savioja, “Real-time 3D finite-difference time-domain simulation of low- and mid-frequency
room acoustics,” in Proc. 13th Int. Conf. Digital Audio Effects (DAFx-10), Graz, Austria, September
6-10, 2010.

A. Southern, D. Murphy, G. Campos, and P. Dias, “Finite difference room acoustic modelling on a
general purpose graphics processing unit,” in Proc. 128th Audio Eng. Soc. Conv., preprint no. 8028,
London, UK, 22-25 May, 2010.

O. C. Zienkiewicz and R. L. Taylor, The finite element method, vol. 3. London, UK: McGraw-Hill,
1977.



10

29

30.

31.

32.

33.

Architectural Acoustics Handbook

. L. L. Thompson, “A review of finite-element methods for time-harmonic acoustics,” J. Acoust. Soc.
Am., vol. 119, no. 3, pp. 1315-1330, 2006.

J.-F Lee, R. Lee, and A. Cangellaris, “Time-domain finite-element methods,” IEEE Trans. Antennas
and Propagation, vol. 45, no. 3, pp. 430-442, 1997.

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” Journal of computational
physics, vol. 73, no. 2, pp. 325-348, 1987.

Y. J. Liu and N. Nishimura, “The fast multipole boundary element method for potential problems:
A tutorial,” Engineering Analysis with Boundary Elements, vol. 30, no. 5, pp. 371-381, 2006.

N. A. Gumerov and R. Duraiswami, Fast multipole methods for the Helmholtz equation in three
dimensions. Amsterdam: Elsevier Science, 2005.

Web
Added
Value™

Th

is book has free material available for download from the

Web Added Value™ resource center at www.jrosspub.com



